首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的温度观测数据长时间缺失值插补方法
引用本文:郑欣彤,边婷婷,张德强,贺伟. 基于深度学习的温度观测数据长时间缺失值插补方法[J]. 计算机系统应用, 2022, 31(4): 221-228. DOI: 10.15888/j.cnki.csa.008493
作者姓名:郑欣彤  边婷婷  张德强  贺伟
作者单位:中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101;中国科学院大学资源与环境学院,北京100049,北京联合大学管理学院,北京100101,中国科学院华南植物园鼎湖山森林生态系统定位研究站,广州510650
基金项目:国家重点研发计划(2107YFD0300403)
摘    要:完整高精度的温度观测数据是农业气象灾害监测、生态系统模拟重要的输入参数.由于野外气象观测条件的限制,气象观测数据缺失现象是常态,数据插补方法是气象数据应用必要处理步骤.本文针对野外小气象观测站站点半小时温度观测数据长时间缺失值问题,结合同一地点较低频次的人工温度观测,构建了新的温度缺失值插补深度学习模型,对缺失的半小时...

关 键 词:长时间序列  BiLSTM-I  温度缺失  高精度插补  深度学习  长记忆
收稿时间:2021-07-04
修稿时间:2021-07-30

Interpolation of Long Time Missing Values of Temperature Based on Deep Learning
ZHENG Xin-Tong,BIAN Ting-Ting,ZHANG De-Qiang,HE Wei. Interpolation of Long Time Missing Values of Temperature Based on Deep Learning[J]. Computer Systems& Applications, 2022, 31(4): 221-228. DOI: 10.15888/j.cnki.csa.008493
Authors:ZHENG Xin-Tong  BIAN Ting-Ting  ZHANG De-Qiang  HE Wei
Affiliation:State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;College of Resources and Environmental, University of Chinese Academy of Sciences, Beijing 100049, China;Management College, Beijing Union University, Beijing 100101, China;DinghuShan Forest Ecosystem Research Station, South China Botanical Garden, Chinese Academy of Science, Guangzhou 510650, China
Abstract:Complete and high-precision temperature observation data are important input parameters for agro-meteorological disaster monitoring and ecosystem simulation. Due to the limitation of meteorological field observation conditions, missing meteorological observation data is common. In response, interpolation becomes a necessary processing step before meteorological data application. In this paper, we construct a new deep learning model for interpolation of missing temperature data, which is employed to interpolate the missing half-hour temperature observations with high accuracy together with the low-frequency manual temperature observations at the same location. The deep learning model has a sequence-to-sequence deep learning structure based on the coding-decoding structure. A bidirectional LSTM-I (BiLSTM-I) network is used for the coding layer of the model, and an LSTM decoding structure and a fully connected decoding structure are respectively adopted for the decoding layer. The experimental analysis results show that the designed BiLSTM-I deep learning method for temperature interpolation is better than other methods. It can meet the need forhigh-precision temperature data interpolation. Particularly, the BiLSTM-I model with the LSTM decoding structure has higher data interpolation precision. The generalization ability of the BiLSTM-I deep learning model is also explored, and the results show that the model is effective in data interpolation for different lengths of the temperature missing window.
Keywords:long time series  BiLSTM-I  temperature missing  high-precision interpolation  deep learning  long term memory
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号