首页 | 本学科首页   官方微博 | 高级检索  
     


A membrane bioreactor for the removal of dimethyl sulphide and toluene from waste air.
Authors:H Van Langenhove  I De Bo  P Jacobs  K Demeestere  J Dewulf
Affiliation:Environmental Organic Chemistry and Technology Research Group (ENVOC), Faculty of Agriculture and Applied Biological Sciences, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium. herman.vanlangenhove@UGent.be
Abstract:In biotrickling filters, mass transfer of hydrophobic compounds is the limiting factor. Biofilters are static systems, and so control and regulation of operational parameters such as pH and nutrient supply can be a problem. In membrane bioreactors, these drawbacks can be avoided. The hydrophobic membrane separates the waste air from the aqueous phase, thus avoiding mass-transfer limitation, while pH and nutrient supply can be directly controlled. In this contribution, an overview will be given of results obtained during a four-year project. First, the physical chemical characteristics (solubility, permeability, diffusivity) and microbial adhesion of different membranes were tested. This led to the selection of a composite membrane consisting of a porous polyvinylidenefluoride (PVDF) support layer coated with a thin (1 or 2.5 microm) dense polydimethylsiloxane (PDMS) top layer. This membrane was mounted into a module provided with four parallel rectangular channels for gas flow (in contact with the porous layer) and nutrient solution (in contact with the dense layer) respectively. After inoculation, a biofilm developed on the dense layer. Experiments were performed with dimethyl sulphide and toluene as target VOCs. Operational characteristics such as elimination capacity as a function of the volumetric load and residence time, effect of nutrient supply, long-term performance) were determined. Mass transfer was studied by measuring concentration profiles along the channels of the module in different conditions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号