首页 | 本学科首页   官方微博 | 高级检索  
     

基于聚类加权随机森林的非侵入式负荷识别
作者姓名:程江洲  谢诗雨  张赟宁  王劲峰  唐阳
作者单位:(三峡大学 电气与新能源学院,湖北 宜昌 443002)
摘    要:非侵入式负荷识别是实现用能管理的重要监测手段,而随机森林因其良好的泛化能力和鲁棒性应用于负荷识别领域。针对传统随机森林算法忽略决策树分类能力的差异、投票不公平的问题,提出了一种基于层次聚类的加权随机森林算法。首先,提取各类负荷开关状态下负荷特征量,建立特征数据库用于训练原始随机森林模型。然后,利用有功功率差检测总线信号中的开关事件,并提取负荷特征量作为验证集和测试集;验证集采用层次聚类选择法获得每个聚类中分类精度最高的决策树,测试集采用加权投票策略实现负荷识别。通过实验验证,说明相比于传统的机器学习算法,该算法可以实现更高的识别精度,准确率可达96.2%。

关 键 词:非侵入式负荷识别  随机森林  层次聚类  加权投票
点击此处可从《陕西电力》浏览原始摘要信息
点击此处可从《陕西电力》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号