首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and lithium storage performances of g-C3N4/Si nanocomposites as anode materials for lithium-ion battery
Authors:Zhengxu BIAN  Zehua TANG  Jinfeng XIE  Junhao ZHANG  Xingmei GUO  Yuanjun LIU  Aihua YUAN  Feng ZHANG  Qinghong KONG
Abstract:As the anode material of lithium-ion battery, silicon-based materials have a high theoretical capacity, but their volume changes greatly in the charging and discharging process. To ameliorate the volume expansion issue of silicon-based anode materials, g-C3N4/Si nanocomposites are prepared by using the magnesium thermal reduction technique. It is well known that g-C3N4/Si nanocomposites can not only improve the electronic transmission ability, but also ameliorate the physical properties of the material for adapting the stress and strain caused by the volume expansion of silicon in the lithiation and delithiation process. When g-C3N4/Si electrode is evaluated, the initial discharge capacity of g-C3N4/Si nanocomposites is as high as 1033.3 mAh/g at 0.1 A/g, and its reversible capacity is maintained at 548 mAh/g after 400 cycles. Meanwhile, the improved rate capability is achieved with a relatively high reversible specific capacity of 218 mAh/g at 2.0 A/g. The superior lithium storage performances benefit from the unique g-C3N4/Si nanostructure, which improves electroconductivity, reduces volume expansion, and accelerates lithium-ion transmission compared to pure silicon.
Keywords:magnesium thermal reduction  g-C3N4/Si nanocomposites  volume expansion  electroconductivity  lithium-ion battery  
点击此处可从《Frontiers in Energy》浏览原始摘要信息
点击此处可从《Frontiers in Energy》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号