首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
计及数据降维和数据清洗的超短期风电功率预测
作者姓名:
刘洪波
盖雪扬
孙黎
马成廉
刘珅诚
作者单位:
现代电力系统仿真控制与绿色电能新技术教育部重点实验室(东北电力大学)
基金项目:
国家重点研发计划项目(2017YFB0902000);
摘 要:
现代通讯和测量技术飞速发展,“风电大数据”时代随之而来。在众多数据维度中提取有效的特征量能提高风电功率预测精度。Shap值可以解释特征变量对预测结果的影响程度,文中应用基于Shap的归因分析模型梳理出对风电功率影响较大的6维特征变量。将其与风电功率数据同时导入基于LOF-ARIMA的异常数据识别模型,从而对风电功率预测过程中所使用的历史数据加以清洗。最终根据VMD-PSO-BiLSTM分解模型完成风电功率超短期预测,实践表明可以显著提高风电功率预测精度。
关 键 词:
数据清洗
大数据
风电功率预测
Shap值
归因分析
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号