首页 | 本学科首页   官方微博 | 高级检索  
     

稳定高效α-Fe2O3光电化学水分解——合理的材料设计和载流子动力学
引用本文:谢佳乐,杨萍萍,李长明.稳定高效α-Fe2O3光电化学水分解——合理的材料设计和载流子动力学[J].材料导报,2018,32(7):1037-1056.
作者姓名:谢佳乐  杨萍萍  李长明
作者单位:苏州科技大学材料科学与器件研究院,苏州,215009 西南大学材料与能源学部,重庆,400715 苏州科技大学材料科学与器件研究院,苏州215009;西南大学材料与能源学部,重庆400715
基金项目:国家自然科学基金,国家重点基础研究发展计划
摘    要:氢能是非常清洁的能源。发展高效、清洁和低成本的产氢装置是利用氢能的首要关键技术问题。光电化学水分解是首选的制氢技术之一。它可实现室温下直接水分解和氢氧分离,并不完全受限于太阳光的周期性波动;其产氢装置可全部由无机材料制成,有好的化学活性和使用寿命。但是,光电化学水分解技术的效率目前还无法满足实际应用的要求,特别是还不能实现长期稳定运行,存在一定的性能衰减。在各种光电极材料中,α-Fe_2O_3是非常重要且具有潜力的稳定高效的光阳极材料,已成为近年来研究的热点。α-Fe_2O_3又称赤铁矿,储量丰富,在光电化学水分解中具有良好的稳定性、低成本和良好的太阳光谱响应等优势,已成为最具应用前景的光电极材料。然而,α-Fe_2O_3固有的一些问题诸如电荷传输差、表面复合严重、电荷转移动力学缓慢等限制了其实际应用。近年来,研究者们已发展了多种多样的策略和途径,例如掺杂、纳米化、异质结和表面处理等来解决上述问题。多种金属和非金属元素如Ti、Sn、Si、S等掺杂的α-Fe_2O_3表明,异质原子的引入会降低电子的有效质量,进而提高导电性,还会影响α-Fe_2O_3的晶体扭曲和活性位点等性质。从零维、一维、二维、三维到层级结构的α-Fe_2O_3都已经成功合成;同时,纳米化也拓展到导电基底的规则阵列图案化,α-Fe_2O_3纳米化能够促进光生空穴产生和利用,已成为α-Fe_2O_3光电化学水分解性能提升的重要途径。研发的n-n型和p-n型α-Fe_2O_3异质结如α-Fe_2O_3/ZnFe2O4、p-Si/α-Fe_2O_3等已较大地提高了其光电催化水分解性能,其中异质结很大程度上促进了α-Fe_2O_3光吸收、光生电荷分离和电极过程动力学。α-Fe_2O_3表面处理如催化剂修饰、钝化层修饰、化学/电化学刻蚀、气氛处理等,则显著改善了α-Fe_2O_3电极的电荷转移、析氧动力学,并抑制了电荷复合。本文主要从材料设计和载流子动力学这两个角度,综述了不同策略和途径对α-Fe_2O_3光电化学水分解性能的影响,分析了纳米结构以及材料复合等处理方式对α-Fe_2O_3光电极性能影响的构效关系,并进一步深入分析了光电化学水分解反应中载流子的动力学过程,建立了α-Fe_2O_3光电极性能提升和光生载流子之间清晰的物理图像。此外,本文还介绍了光电化学水分解的基本原理和物理过程。该综述可为今后合理设计制备基于α-Fe_2O_3的稳定高效光电极提供有益的理论指导与实验设计方法。

关 键 词:赤铁矿  光电化学水分解  材料设计  载流子动力学  hematite  photoelectrochemical  water  splitting  materials  design  charge  carrier  dynamics
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《材料导报》浏览原始摘要信息
点击此处可从《材料导报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号