首页 | 本学科首页   官方微博 | 高级检索  
     

即时局部建模在填料塔液泛气速预测的应用
引用本文:周丽春,靳鑫,刘毅,高增梁,金福江. 即时局部建模在填料塔液泛气速预测的应用[J]. 化工学报, 2016, 67(3): 1070-1075. DOI: 10.11949/j.issn.0438-1157.20151956
作者姓名:周丽春  靳鑫  刘毅  高增梁  金福江
作者单位:1. 华侨大学信息科学与工程学院, 福建 厦门 361021;2. 浙江工业大学过程装备及其再制造教育部工程研究中心, 浙江 杭州 310014
基金项目:国家自然科学基金项目(61273069);中央高校基本科研业务费专项(JB-ZR1204)。
摘    要:填料塔在工业生产中应用广泛,准确预测填料塔的液泛气速具有重要的应用价值。实际的填料类型多种多样,获取的填料数据也存在差异,单一全局模型的预测效果受到一定的限制。首先给出了岭参数极限学习机模型及其节点增加的递推算法,以有效更新在线模型。结合即时学习方式,提出了局部递推岭参数极限学习机在线建模方法,用于填料塔液泛气速的预测。实验结果表明所提出方法能更充分挖掘数据间的相关信息,预测效果优于相应的全局模型。

关 键 词:非线性系统  动态建模  神经网络  递推算法  极限学习机  系统工程  
收稿时间:2015-12-24
修稿时间:2015-12-30

Just-in-time local modeling for flooding velocity prediction in packed towers
ZHOU Lichun,JIN Xin,LIU Yi,GAO Zengliang,JIN Fujiang. Just-in-time local modeling for flooding velocity prediction in packed towers[J]. Journal of Chemical Industry and Engineering(China), 2016, 67(3): 1070-1075. DOI: 10.11949/j.issn.0438-1157.20151956
Authors:ZHOU Lichun  JIN Xin  LIU Yi  GAO Zengliang  JIN Fujiang
Affiliation:1. School of Information Science and Engineering, Huaqiao University, Xiamen 361021, Fujian, China;2. Engineering Research Center of Process Equipment and Remanufacturing (Ministry of Education), Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
Abstract:Packed towers have been widely used in industrial productions. It is important to accurately predict the flooding velocity of packed towers. In industrial practice, there are many kinds of packings which can show different characteristics. Only using a single global model is still difficult to achieve satisfied prediction results. To overcome the problem, a new local modeling method is proposed to predict the flooding velocity. First, a recursive algorithm of ridge extreme learning machine with nodes growing is formulated, which can update the online model in an efficient manner. Moreover, using the just-in-time learning manner, the local recursive ridge parameter extreme learning machine (LRRELM)-based online modeling method is proposed. The experimental results show that the LRRELM model can explore more related information among data and thus to obtain better and more reliable prediction performance, compared with the related global models.
Keywords:nonlinear systems  dynamic modeling  neural networks  recursive algorithm  extreme learning machine  systems engineering  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号