首页 | 本学科首页   官方微博 | 高级检索  
     

基于Pareto协同进化算法的TS模糊模型设计
引用本文:张永,邢宗义,向峥嵘,胡维礼. 基于Pareto协同进化算法的TS模糊模型设计[J]. 控制与决策, 2006, 21(12): 1332-1337,1342
作者姓名:张永  邢宗义  向峥嵘  胡维礼
作者单位:南京理工大学,自动化学院,南京,210094;南京理工大学,自动化学院,南京,210094;南京理工大学,自动化学院,南京,210094;南京理工大学,自动化学院,南京,210094
基金项目:国家自然科学基金项目(60474034);中国博士后科学基金项目(2005037733).
摘    要:提出一种可同时构造多个精确性和解释性较好折中的TS模糊模型的设计方法.该方法由以下两步组成:1)采用模糊聚类算法辨识初始模型;2)利用Pareto协同进化算法对所获得的初始模型进行结构和参数优化.Pareto协同进化算法由规则前件种群和隶属函数种群组成,其目标函数同时考虑模型的精确性和解释性,采用一种新的基于非支配排序的多种群合作策略.利用该方法对一类合成非线性动态系统进行建模,仿真结果验证了该方法的有效性.

关 键 词:TS模糊模型  模糊聚类  Pareto解  协同进化算法  解释性
文章编号:1001-0920(2006)12-1332-06
收稿时间:2005-10-10
修稿时间:2005-10-102006-01-11

Design of TS Fuzzy Model Based on Pareto-coevolution Algorithm
ZHANG Yong,XING Zong-yi,XIANG Zheng-rong,HU Wei-li. Design of TS Fuzzy Model Based on Pareto-coevolution Algorithm[J]. Control and Decision, 2006, 21(12): 1332-1337,1342
Authors:ZHANG Yong  XING Zong-yi  XIANG Zheng-rong  HU Wei-li
Affiliation:College of Automation, Nanjing University of Science and Technology, Nanjing 210094, China.
Abstract:A novel approach to construct accurate and interpretable TS fuzzy systems is proposed. The approach is composed of two phases. The first one is to identify the initial fuzzy system using the fuzzy clustering algorithm. The second one is to optimize the structure and the parameters of the fuzzy system by the Pareto-coevolution algorithm. The Pareto-coevolution algorithm owns two species including the premise structure species and the parameters species. Considering both precision and interpretability, three objective functions of the fuzzy system are defined and calculated by a new non-dominated sorting method. The proposed approach is applied to a benchmark problem to show its validity.
Keywords:TS fuzzy model   Fuzzy clustering   Pareto optimal solution   Coevolution algorithm   Interpretability
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号