首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys
Authors:Z Liu  G Welsch
Affiliation:(1) Department of Materials Science and Engineering, Case Western Reserve University, 44106 Cleveland, OH
Abstract:Two alloys, Ti-6Al-2V and Ti-2Al-16V, simulating the alpha and beta phases of Ti-6A1-4V, respectively, were prepared with oxygen concentrations from 0.07 to 0.65 wt pct (0.20 to 1.83 at. pct). Their microstructure, deformation behavior, and strength were investigated with X-ray diffraction, microscopy, and mechanical tests to determine the effects of oxygen concentration and heat treatment. In both alloys the hardness increases in identical fashion with the square root of oxygen concentration. The alloys' strengths also depend on heat treatment, but in different ways. Whereas the alpha alloy is non-age-hardenable, the beta alloy's strength can be doubled by aging. The hardening effect of oxygen is generally unaffected by heat treatment, except for the alloys with the highest oxygen concentrations. During aging of the alpha a small amount of Ti3Al can form, and slight age-hardening occurs. The ductility of the alpha alloy is little affected by aging. On the other hand, oxygen causes a change from good ductility at low oxygen concentration (0.07 wt pct) to total brittleness at 0.65 wt pct oxygen, independent of heat treatment. In the beta alloy there are complex phase transformations depending on heat treatment. Its deformation behavior varies from very ductile in solutiontreated and quenched (STQ) condition to totally brittle in aged conditions. The aging embrittlement appears to be caused by alpha and some omega precipitation. Decoration of the beta grain boundaries with precipitates accounts for the intergranular brittle fracture. Oxygen, on the other hand, is not an embrittler, although it reduces the ductility of the beta alloy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号