首页 | 本学科首页   官方微博 | 高级检索  
     

无网格彼得洛夫伽辽金法在大变形问题中的应用
引用本文:张希,姚振汉. 无网格彼得洛夫伽辽金法在大变形问题中的应用[J]. 工程力学, 2006, 23(Z1): 16-20
作者姓名:张希  姚振汉
作者单位:清华大学工程力学系,北京,10008
摘    要:将无网格局部彼得洛夫伽辽金(MLPG)法推广应用于大变形问题。导出了非线性局部子域对称弱形式,通过对该弱形式进行线性化得到了用于非线性计算的MLPG格式,并对MLPG的计算速度进行了优化,使MLPG成为一种复杂度为O(N)的算法。几何非线性和几何与材料双重非线性的数值算例表明,相对有限元方法,MLPG在处理此类大变形问题时收敛性好,精度高,并能减小有限元分析中易遇到的网格畸变带来的困难。

关 键 词:无网格法  无网格局部彼得洛夫伽辽金法  几何非线性  材料非线性  超弹性材料
文章编号:1000-4750(2006)Sup.I-0016-05
修稿时间:2005-06-20

APPLICATION OF MLPG METHOD IN LARGE DEFORMATION ANALYSIS
ZHANG Xi,YAO Zhenhan. APPLICATION OF MLPG METHOD IN LARGE DEFORMATION ANALYSIS[J]. Engineering Mechanics, 2006, 23(Z1): 16-20
Authors:ZHANG Xi  YAO Zhenhan
Abstract:The meshless local Petrov-Galerkin method (MLPG) is extended for solving large deformation problems in this paper. A nonlinear local symmetric weak form is derived and linearized to obtain the nonlinear MLPG approach, and the optimization of the efficiency of MLPG is performed to make the MLPG method to be an algorithm of O(N). Some numerical examples on both geometrically nonlinear, and geometrically and material multiple nonlinear problems are given to verify that the MLPG handles such large deformation problems with good convergence and high accuracy as compared with the finite element method, and it can reduce the difficulty of mesh distortion, which usually encountered in the finite element analysis.
Keywords:the meshless method  MLPG method  geometrically nonlinear  material nonlinear  hyperelastic material
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号