首页 | 本学科首页   官方微博 | 高级检索  
     

装配铅挤压阻尼器的摇摆-自复位双柱墩抗震性能及设计方法
引用本文:石岩,钟正午,秦洪果,韩建平,孙治国,王军文. 装配铅挤压阻尼器的摇摆-自复位双柱墩抗震性能及设计方法[J]. 工程力学, 2021, 38(8): 166-177,203. DOI: 10.6052/j.issn.1000-4750.2020.08.0575
作者姓名:石岩  钟正午  秦洪果  韩建平  孙治国  王军文
作者单位:兰州理工大学土木工程学院,甘肃,兰州 730050;防灾科技学院土木工程学院,北京 101601;石家庄铁道大学土木工程学院,河北,石家庄 050043
基金项目:国家自然科学基金项目(51908265,51768042);红柳优秀青年人才资助计划项目(04-061810);河北省自然科学基金项目(E2019210215);道路与铁道工程安全保障省部共建教育部重点实验室项目(STKF201904)
摘    要:为发展具有损伤可控和自复位性能桥梁双柱墩,选取铅挤压阻尼器(lead-extrusion dampers,LEDs)为可更换耗能装置,并通过预应力筋提供自恢复力,组成摇摆-自复位(rocking self-centering,RSC)双柱墩体系(RSC-LEDs);通过对其抗震性能的研究,对应发展了一种基于等能量设计流...

关 键 词:摇摆-自复位双柱墩  铅挤压阻尼器  基于等能量的设计方法  能量修正系数  OpenSees
收稿时间:2020-08-19

SEISMIC PERFORMANCE AND CORRESPONDING DESIGN METHOD OF ROCKING SELF-CENTERING BRIDGE BENTS EQUIPPED WITH LEAD-EXTRUSION DAMPERS
Affiliation:1.School of Civil Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China2.School of Civil Engineering, Institute of Disaster Prevention, Beijing 101601, China3.School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China
Abstract:To develop the self-centering two-column bents and achieve the seismic damage control, lead-extrusion dampers (LEDs) were selected as the external energy dissipaters, and a rocking self-centering bridge bent system equipped with LEDs was proposed. The seismic performance of this system was studied, and a corresponding design method which was based on the equivalent energy-based design procedure (EEDP) was developed. Initially, the numerical analysis model of RSC-LEDs bridge bent was established, and the simulation method was validated by an existing cyclic test of a RSC bridge bent specimen. Then the effect of LED output force, gravity load of superstructure, prestressing force, areas of unbonded tendon and cap beam-to-column stiffness ratio on the seismic performance of RSC-LEDs bridge bents was studied. 32 RSC bridge bents with different parameters were designed to conduct regressive analysis, and semi-empirical formulas were given to calculate the effective stiffness and yield strength of RSC-LEDs bridge bents. Combining the Chinese seismic code and EEDP, a two-stage seismic design method was proposed for RSC-LEDs bridge bents, and the results show that the obtained semi-empirical formulas can estimate the effective stiffness and yield strength accurately. The RSC-LEDs bridge bents designed by the proposed method can achieve the target capacity curve, and is able to remain elastic under E1 level earthquake. The LEDs start to dissipate energy under E2 level earthquake and the seismic displacement demand can be controlled within a design range.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《工程力学》浏览原始摘要信息
点击此处可从《工程力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号