首页 | 本学科首页   官方微博 | 高级检索  
     

结合超像素分割的多尺度特征融合图像语义分割算法
引用本文:官申珂,林 晓,郑晓妹,朱媛媛,马利庄. 结合超像素分割的多尺度特征融合图像语义分割算法[J]. 图学学报, 2021, 42(3): 406-413. DOI: 10.11996/JG.j.2095-302X.2021030406
作者姓名:官申珂  林 晓  郑晓妹  朱媛媛  马利庄
作者单位:上海师范大学信息与机电工程学院,上海 200234;上海交通大学电子信息与电气工程学院,上海 200240
基金项目:国家自然科学基金项目(61872242)
摘    要:深度学习的发展加快了图像语义分割的研究.目前,最有效的图像语义分割研究方法大部分都是基于全卷积神经网络(FCNN),尽管现有的语义分割方法能有效地对图像进行整体分割,但对于图像中的重叠遮挡物体不能清晰地识别出边缘信息,也不能有效地融合图像高低层的特征信息.针对以上问题,在采用FCNN来解决图像语义分割问题的基础上,利用...

关 键 词:全卷积神经网络  多尺度特征融合  超像素分割

A semantic segmentation algorithm using multi-scale feature fusionwith combination of superpixel segmentation
GUAN Shen-ke,LIN Xiao,ZHENG Xiao-mei,ZHU Yuan-yuan,MA Li-zhuang. A semantic segmentation algorithm using multi-scale feature fusionwith combination of superpixel segmentation[J]. Journal of Graphics, 2021, 42(3): 406-413. DOI: 10.11996/JG.j.2095-302X.2021030406
Authors:GUAN Shen-ke  LIN Xiao  ZHENG Xiao-mei  ZHU Yuan-yuan  MA Li-zhuang
Affiliation:1. College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China;2. College of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:The advancement of deep learning has boosted the research on image semantic segmentation. At present,most effective methods for this research are based on the fully convolutional neural networks. Although the existingsemantic segmentation methods can effectively segment the image as a whole, they cannot clearly identify the edgeinformation of the overlapped objects in the image, and cannot effectively fuse the high- and low-layer featureinformation of the image. To address the above problems, superpixel segmentation was employed as an auxiliaryoptimization to optimize the segmentation results of object edges based on the fully convolutional neural network. Atthe same time, the design of a joint cross-stage partial multiscale feature fusion module can enable the utilization ofimage spatial information. In addition, a skip structure was added to the upsampling module to enhance the learning ability of the network, and two loss functions were adopted to ensure network convergence and improve networkperformance. The network was trained and tested on the public datasets PASCAL VOC 2012. Compared with otherimage semantic segmentation methods, the proposed network can improve the accuracies in pixel and segmentation,and displays strong robustness. 
Keywords: fully convolutional neural network  multiscale feature fusion  superpixel segmentation  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《图学学报》浏览原始摘要信息
点击此处可从《图学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号