首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of hole shape on the extent of fatigue life improvement by cold expansions
Authors:M Sohel Rana  C Makabe  G Fujiwara  
Affiliation:aDept. of Mech. Eng, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan;bJapan Air Line Co., OB, Tokyo, Japan
Abstract:The cold expansion of circular holes is known to improve resistance to fatigue. In this study the effect of the cold expansion of a circular hole on fatigue life by means of a quasi-elliptical pin was investigated. Additional evaluations were conducted, including determinations of the effects of crack propagation from the hole. The major life extension was obtained through slower crack growth in the short-crack stage. The decrease in fatigue crack growth in cold-expanded specimens was related to higher crack-opening stresses which are a consequence of the presence of compressive residual stresses arising from cold expansion. In this study, an experimental investigation was carried out to quantify the effect of the cold expansion on the initiation and the propagation of the fatigue crack and was discussed. Fatigue life improvement of the cold-worked hole specimen was explained by determining the hardness results around the cold-worked hole. The results indicate that significant life improvements can be obtained through cold expansion applied with a quasi-elliptical pin in this work with the optimum results being obtained when the pin diameter is 4% larger than the diameter of the specimen hole. Also, a brief examination of the effect of the rivet shape on the fatigue life of a riveted specimen was carried out. To lengthen the fatigue life of a riveted plate which uses countersunk head rivets, the shape of the countersink and the rivet head were improved. The experimental results showed that the fatigue life of the riveted plate was improved where the improved rivet was used.
Keywords:Fatigue life enhancement  Crack growth retardation  Residual stress  Cold expansion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号