首页 | 本学科首页   官方微博 | 高级检索  
     


A hybrid optimized error correction system for time series forecasting
Abstract:Time series forecasting is a challenging task in machine learning. Real world time series are often composed by linear and nonlinear structures which need to be mapped by some forecasting method. Linear methods such as autoregressive integrated moving average (ARIMA) and nonlinear methods such as artificial neural networks (ANNs) could be employed to handle such problems, however model misspecification hinders the forecasting process producing inaccurate models. Hybrid models based on error forecasting and combination can reduce the misspecification of single models and improve the accuracy of the system. This work proposes a hybrid system that is composed of three parts: a) linear modeling of the time series, b) nonlinear modeling of the error series, and c) combination of the forecasts using three distinct approaches. The system performs a search for the best parameters of the linear and nonlinear components, and of the combination approaches. Particle swarm optimization is used to find suitable architecture and weights. Experiments show that the proposed technique achieved promising results in time series forecasting.
Keywords:Time series forecasting  Particle swarm optimization  Extreme learning machines  Hybrid intelligent systems  Artificial neural networks
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号