首页 | 本学科首页   官方微博 | 高级检索  
     


Changes in vessel ultrastructure during ischemia and reperfusion of rabbit hindlimb: implications for therapeutic intervention
Authors:G Aliev  R Cirillo  E Salvatico  M Paro  M Prosdocimi
Affiliation:Department of Vascular Biology, Fidia Research Laboratories, Abano Terme, Italy.
Abstract:Peripheral ischemia was induced in the rabbit by occlusion of the left iliac artery for 6 hr, followed by 24 hr of reperfusion. Biochemical and morphological investigations were performed to evaluate the extent of vascular and tissue injury. Blood samples for plasma enzyme determinations (creatine kinase (CK) and lactate dehydrogenase (LDH) activities) were obtained at times t = 0, t = 6, t = 30 hr. Plasma CK and LDH activities in ischemic animals were approximately twice as high as those in sham-operated animals at the end of reperfusion, although no difference was observed at the end of the period of ischemia. Morphological and morphometric analysis of extensor digitorum longus muscle from ischemic animals showed a reduction in the number of patent capillary vessels per muscle fiber (1.54 +/- 0.1 and 1.04 +/- 0.09, P < 0.05, in sham and ischemic groups, respectively; mean +/- SEM). In addition, the number of microvilli on endothelial surfaces were considerably increased in the ischemic group (0.14 +/- 0.02 and 0.41 +/- 0.01 microns -2, P < 0.001, in sham and ischemic groups, respectively). A great number of adhered leucocytes were found on the vessel surface with some leucocytes having migrated through the vessel wall. Microcirculatory damage was accompanied by the formation of microthrombi which sometimes occluded the entire vessel lumen. The infusion of 1 mg/kg/hr of cloricromene for 6 hr prevented ischemic injury in microvessels and also prevented swelling of muscle mitochondria. In the treated group the number of patent capillaries per muscle fiber was very similar to that found in sham-operated animals (1.49 +/- 0.08; P < 0.01 vs. ischemic control). In conclusion, several different cell types are involved in the pathophysiological changes which occur in microvessels during ischemia/reperfusion injury. Pharmacological interventions, which inhibit the interactions of blood cells with endothelium, may be of value in the treatment of peripheral ischemia/reperfusion injury.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号