首页 | 本学科首页   官方微博 | 高级检索  
     


Stabilization of SnO2 ultrafine particles by additives
Authors:C Xu  J Tamaki  N Miura  N Yamazoe
Affiliation:(1) Department of Materials Science and Technology, Graduate School of Engineering Sciences, Kyushu University, 816 Kasuga, Fukuoka, Japan
Abstract:In order to stabilize ultrafine particles of SnO2 which is essential to obtain high gas sensitivity, a systematic investigation was undertaken regarding the stabilizing effects of 5 at% impregnated foreign additives, consisting of oxides or polyoxy compounds of 31 metals and 3 non-metals. The data of specific surface area, SA, as well as SnO2 crystallite size, D, evaluated from X-ray diffraction showed that the additives could be classified into several groups according to the effectiveness. The most effective group, consisting of P-Ba, Sm, Ba, P, Mo, W, Ca, Sr, Cr and In, could keepD less than 10 nm even after calcination at 900°C, whereas pure SnO2 underwent grain growth to haveD of 13 and 27 nm at 600 and 900°C, respectively. Electron microscopy revealed that neck sizes, X, between crystallites were fairly proportional toD(X/D = 0.80). A simple analysis of SA and D data based on a monosized sphere model suggested that each crystallite was coordinated with 3–4.5 neighbours through the necks. The existing state and stabilizing mechanism of additives are discussed in conjunction with the electrical resistance of porously sintered elements.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号