首页 | 本学科首页   官方微博 | 高级检索  
     


Selective catalytic fast pyrolysis of Jatropha curcas residue with metal oxide impregnated activated carbon for upgrading bio-oil
Authors:Prangtip Kaewpengkrow  Duangduen Atong  Viboon Sricharoenchaikul
Affiliation:1. Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand;2. National Metal and Materials Technology Center, Pathumthani, Thailand;3. Energy Research Institute, Chulalongkorn University, Bangkok, Thailand
Abstract:Jatropha curcas waste was subjected to catalytic pyrolysis at 873 K using an analytical pyrolysis–gas chromatography/mass spectrometry in order to investigate the relative effect of various metal oxide/activated carbon (M/AC) catalysts on upgrading bio-oil from fast pyrolysis vapors of Jatropha waste residue. A commercial AC support was impregnated with Ce, Pd, Ru or Ni salts and calcined at 523 K to yield the 5 wt.% M/AC catalysts, which were then evaluated for their catalytic deoxygenation ability and selectivity towards desirable compounds. Without a catalyst, the main vapor products were fatty acids of 60.74% (area of GC/MS chromatogram), while aromatic and aliphatic hydrocarbon compounds were presented at only 11.32%. Catalytic pyrolysis with the AC and the M/AC catalysts reduced the oxygen-containing (including carboxylic acids) products in the pyrolytic vapors from 73.68% (no catalyst) to 1.60–36.25%, with Ce/AC being the most effective catalyst. Increasing the Jatropha waste residue to catalyst (J/C) ratio to 1:10 increased the aromatic and aliphatic hydrocarbon yields in the order of Ce/AC > AC > Pd/AC > Ni/AC, with the highest total hydrocarbon proportion obtained being 86.57%. Thus, these catalysts were effective for deoxygenation of the pyrolysis vapors to form hydrocarbons, with Ce/AC, which promotes aromatics, Pd/AC and Ni/AC as promising catalysts. In addition, only a low yield (0.62–7.80%) of toxic polycyclic aromatic hydrocarbons was obtained in the catalytic fast pyrolysis (highest with AC), which is one advantage of applying these catalysts to the pyrolysis process. The overall performance of these catalysts was acceptable and they can be considered for upgrading bio-oil.
Keywords:Jatropha residue  Py–GC/MS  Activated carbon  Fast pyrolysis  Metal based catalyst
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号