首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical and experimental analysis of wall thickness variation of a hemispherical PMMA sheet in thermoforming process
Authors:Taher Azdast  Ali Doniavi  Samrand Rash Ahmadi  Ehsan Amiri
Affiliation:1. Mechanical Engineering Department, Urmia University, Urmia, Iran
Abstract:In thermoforming, a heated plastic sheet is stretched into a mold cavity by applying pressure, eventually assisted by direct mechanical loading. Since upon its contact with the cold surface of the mold the sheet is prevented from undertaking any further deformation, the forming sequence induces a thickness variation in the final part. This fundamental inherent defect of thermoforming technology highly affects the optical characteristics of optical products. Therefore, the more uniform the wall thickness, the less chance optical defects will occur. In this research, the production process of a hemispherical transparent PMMA sheet as an optical product was numerically simulated. The simulated process is a two-step process comprising a combination of free forming and plug-assisted forming. In the simulation, the acrylic sheet is assumed to undergo a nonlinear and large elastic deformation which merits application of hyperelastic models. Mooney–Rivlin hyperelastic model is used as the constitutive equation. The obtained numerical results are validated with those achieved from the experiments. Different combinations of free forming and plug-assisted forming methods are studied based on what percentage of total height of the final part is produced by each method. Finally, an optimum combination of the two-step forming process is proposed. With this optimum combination, satisfactorily uniform wall thickness and minimal mold marks on the product surface will be achieved.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号