摘 要: | 小样本学习任务旨在仅提供少量训练样本的情况下完成对测试样本的正确分类.基于度量学习的小样本学习方法通过将样本映射到嵌入空间中,计算样本间距离得到相似性度量以预测类别,但仅对样本特征进行独立映射,而忽略了对整个任务的观察,同时在小样本场景下通过传统方法计算的原型与期望原型存在偏差,导致在查询集上泛化性较低.针对上述问题,提出了特征关系依赖网络(FRDN).特征关系依赖网络包含两个模块:首先使用关系挖掘模块充分挖掘任务中样本的类内与类间关系,将其作为自注意力值对类簇进行调整,以获得判别性更高的任务自适应嵌入空间,计算初始原型;随后使用偏差抑制模块对初始原型进行校正,得到在查询集上泛化性更高的优化原型,进一步提高模型的分类准确率.在MiniImagenet数据集上,该方法1-shot分类准确率59.17%,5-shot准确率74.11%,分别超过传统度量学习方法6.13%与2.83%;在CUB数据集上分别提升9.3%和2.74%.
|