首页 | 本学科首页   官方微博 | 高级检索  
     

叠氮化银起爆药连续化合成芯片的设计与应用研究
引用本文:韩瑞山,王燕兰,卢飞朋,张松,张方,李蛟,褚恩义. 叠氮化银起爆药连续化合成芯片的设计与应用研究[J]. 含能材料, 2024, 32(3): 270-279
作者姓名:韩瑞山  王燕兰  卢飞朋  张松  张方  李蛟  褚恩义
作者单位:陕西应用物理化学研究所, 瞬态化学效应与控制全国重点实验室, 陕西 西安 710061,陕西应用物理化学研究所, 瞬态化学效应与控制全国重点实验室, 陕西 西安 710061,陕西应用物理化学研究所, 瞬态化学效应与控制全国重点实验室, 陕西 西安 710061,陕西应用物理化学研究所, 瞬态化学效应与控制全国重点实验室, 陕西 西安 710061,陕西应用物理化学研究所, 瞬态化学效应与控制全国重点实验室, 陕西 西安 710061,陕西应用物理化学研究所, 瞬态化学效应与控制全国重点实验室, 陕西 西安 710061,陕西应用物理化学研究所, 瞬态化学效应与控制全国重点实验室, 陕西 西安 710061
基金项目:国家自然科学基金(22205023)
摘    要:针对叠氮化银(AgN3,简写为SA)起爆药合成过程对于反应溶液快速混合的要求,设计制作了连续反向旋T形微混合芯片,并采用Ansys Fluent仿真模拟软件对芯片结构及反应物流速等因素对混合效率的影响规律进行了研究,优化获得了高效微混合芯片结构。使用该芯片进行了纳米SA起爆药的连续化合成,通过扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、差示扫描量热(DSC)研究了SA起爆药的形貌、成分结构与热性能。结果表明:当微混合芯片的通道尺寸为1 mm,对撞角度180°,反应物流速4 mL·min-1以上时,可获得接近100%的混合效率。通过调节反应物流速、浓度和添加表面活性剂,可有效调控产物粒径及其分布,且反应产物主要成分为正交晶系的AgN3晶体。相较常规方法,使用微流控方法制备的SA起爆药放热峰温度由365.2 ℃提前到358.2 ℃(降低7 ℃),且放热量由851.6 kJ·kg-1升高到976.7 kJ·kg-1(升高14.7%),表明微流控方法制备的SA起爆药具有更高的反应活性和能量。

关 键 词:微流控  微混合芯片  起爆药  叠氮化银
收稿时间:2024-01-08
修稿时间:2024-03-05

Design and Application Investigations of a Microfluidic Chip for the Continuous Synthesis of Silver Azide Primary Explosive
HAN Rui-shan,WANG Yan-lan,LU Fei-peng,ZHANG Song,ZHANG Fang,LI Jiao and CHU En-yi. Design and Application Investigations of a Microfluidic Chip for the Continuous Synthesis of Silver Azide Primary Explosive[J]. Chinese Journal of Energetic Materials, 2024, 32(3): 270-279
Authors:HAN Rui-shan  WANG Yan-lan  LU Fei-peng  ZHANG Song  ZHANG Fang  LI Jiao  CHU En-yi
Affiliation:State Key Laboratory of Transient Chemical Effects and Control, Shaanxi Applied Physics-Chemistry Research Institute, Xi′an 710061, China,State Key Laboratory of Transient Chemical Effects and Control, Shaanxi Applied Physics-Chemistry Research Institute, Xi′an 710061, China,State Key Laboratory of Transient Chemical Effects and Control, Shaanxi Applied Physics-Chemistry Research Institute, Xi′an 710061, China,State Key Laboratory of Transient Chemical Effects and Control, Shaanxi Applied Physics-Chemistry Research Institute, Xi′an 710061, China,State Key Laboratory of Transient Chemical Effects and Control, Shaanxi Applied Physics-Chemistry Research Institute, Xi′an 710061, China,State Key Laboratory of Transient Chemical Effects and Control, Shaanxi Applied Physics-Chemistry Research Institute, Xi′an 710061, China,State Key Laboratory of Transient Chemical Effects and Control, Shaanxi Applied Physics-Chemistry Research Institute, Xi′an 710061, China
Abstract:To meet the demand for rapid mixing of the reaction solution in the synthesis of silver azide (AgN3, SA) primary explosives, a continuous reverse-rotating T-shaped micro-mixing chip was designed and fabricated. The influence of chip structure and reactant flow rates on mixing efficiency was investigated using Ansys Fluent simulation software, leading to optimization of an efficient micro-hybrid chip structure. This optimized chip was employed for the continuous synthesis of SA primary explosives. The morphology, compositional structure, and thermal properties of the resulting SA primary explosives were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). It was observed that a near 100% mixing efficiency could be achieved when employing a micro-mixing chip with a channel size of 1 mm, collision angle of 180°, and reactant flow rate above 4 mL·min-1. By adjusting the flow rate, concentration, and surfactant content of the reactants, uniform morphology with narrow particle size distribution could be obtained for the SA primary explosives; their main component consisted of AgN3 crystals exhibiting an orthorhombic crystal system. Compared to the conventional methods, the exothermic peak temperature decreased from 365.2 ℃ to 358.2 ℃ (a reduction by 7 ℃) while the exothermic amount increased from 851.6 kJ·kg-1 to 976.7 kJ·kg-1 (an increase by 14.7%) when utilizing microfluidic preparation techniques for SA primary explosives, indicating enhanced reactivity and energy.
Keywords:microfluidic  micro-mixing chip  primary explosive  silver azide
点击此处可从《含能材料》浏览原始摘要信息
点击此处可从《含能材料》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号