摘 要: | 超密集网络(Ultra-dense network)通过密集部署微基站满足了爆炸式的流量需求,但是干扰严重,合理进行资源分配尤为重要.为减少干扰和进行资源分配,本文提出一种基于混合分簇的资源分配算法.首先,为解决传统K-means算法簇个数和簇中心点难以确定的问题,采用Canopy算法先进行预处理.同时,在用Canopy算法进行预处理时,没有直接设置距离阈值,引入加权平均值公式进行阈值选择,可以实现根据现实场景动态改变簇的大小和个数.然后,最大化吞吐量的同时考虑用户的服务质量,根据优化目标和约束条件,本文提出用拉格朗日对偶算法准确计算出微基站给用户分配的子信道,且采用次梯度更新算法不断更新拉格朗日乘子,得到子信道的最终分配结果.最后,为减少能耗,没有随机地给用户分户分配功率,采用注水算法给用户分配功率.仿真结果表明,所提分簇算法更加准确、均匀地将小基站分布在每个簇中,在完成分簇的前提下,所提资源分配算法不但保障了用户服务质量,而且显著提高了系统吞吐量.
|