首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of surface chemistry on the tribological performance of a MEMS electrostatic lateral output motor
Authors:Patton  Steven T.  Cowan  William D.  Eapen  Kalathil C.  Zabinski  Jeffrey S.
Affiliation:(1) University of Dayton Research Institute, Dayton, OH 45469-0168, USA;(2) Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433-7750, USA
Abstract:The effect of surface chemistry on the tribological performance and reliability of a MEMS lateral output motor is reported. Relative humidity (RH) and octadecyltrichlorosilane (OTS) self-assembled monolayer (SAM) coatings were used to change surface chemistry. Electrical and tribological performance of uncoated and OTS-coated motors were found to be dependent on RH. For uncoated motors, excessive wear of sliding contacts and welding (permanent adhesion) of static contacts were observed at 0.1% RH. Degradation of electrostatic force and high static friction (stiction) forces limited dynamic performance and reliability and caused device sticking at and above 70% RH. Around 50% RH, uncoated motors exhibited negligible wear, low adhesion, and a wear life at least three orders of magnitude longer than in the dry environment (experiments were stopped without failure after about one billion cycles). Water vapor behaved as a gas phase replenishable lubricant by providing a protective adsorbed film. The OTS coating broadened the operating envelope to 30–50% RH and reduced stiction, which allowed better dynamic performance at high RH. The OTS coating improved durability at 0.1% RH, but it was still poor. At high RH, stiction problems reoccurred when the OTS coating was worn away. By controlling and balancing surface chemistry (adsorbed water and OTS), excellent performance, low friction and wear, and excellent durability were attained with the lateral output motor.
Keywords:MEMS tribology  surface chemistry  adsorbed water  self-assembled monolayer  wear
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号