首页 | 本学科首页   官方微博 | 高级检索  
     


Leak-before-break and plastic collapse behaviour of statically indeterminate pipe system with circumferential crack
Authors:Sung-Po Liu  Kotoji Ando
Abstract:Much research has been carried out on Leak-Before-Break (LBB) behavior of pipes with cracks. However, most studies have been made on statically determinate pipe systems. Few studies have been made on LBB behavior of statically indeterminate pipe systems. Most pipe systems in nuclear power plants have supports and restraints, thus they can be considered as statically indeterminate pipe systems. From above points of view, LBB and plastic collapse behaviors of statically indeterminate pipe with circumferential crack and compliance were studied in this paper. A new method is proposed to analyze and evaluate the LBB and plastic collapse behavior of a statically indeterminate structure. The pipe system of which one end is clamped and the other is supported with compliance was analyzed. The main results obtained are as follows: (1) By combining the limit analysis theory and elastic–plastic fracture mechanics, the effects of crack size, compliance and fracture toughness on load deflection behaviors to failure and structural integrity of statically indeterminate pipe system have been analyzed quantitatively and easily. (2) When a crack grows in a statically indeterminate pipe before plastic collapse, load drop conditions can be derived quantitatively, as a function of JIC, dJ/da, flow stress, crack size, pipe span length, compliance and flexural rigidity of the pipe. (3) The analytic method developed in this research is useful and convenient to evaluate the LBB and tearing instability behavior of a statically indeterminate pipe system. (4) LBB resolves easily for statically indeterminate pipes with a crack, even when it does not resolve for statically determinate pipes with the same crack. That results from the fact that bending moment redistribution during the fracture process occurs easily for statically indeterminate pipe systems, and its redistribution restrains plastic deformation of the cracked weak section.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号