首页 | 本学科首页   官方微博 | 高级检索  
     

大规模电动汽车充放电优化控制及容量效益分析
引用本文:罗卓伟,胡泽春,宋永华,徐智威,阳岳希,刘辉. 大规模电动汽车充放电优化控制及容量效益分析[J]. 电力系统自动化, 2012, 36(10): 19-26
作者姓名:罗卓伟  胡泽春  宋永华  徐智威  阳岳希  刘辉
作者单位:电力系统国家重点实验室,清华大学电机系,北京市100084
基金项目:国家自然科学基金重大项目 国家高技术研究发展计划(863计划)
摘    要:建立了电动汽车充放电两阶段优化模型,并采用整数规划方法求解,以获取通过优化控制降低的峰荷量及车辆到电网(V2G)的放电量。考虑电动汽车起始充电时间、起始荷电状态的随机分布,采用拉丁超立方抽样方法进行抽样,以有效减小计算规模。以中国2020年和2030年电动汽车充电负荷为例,对电动汽车可控比例不同情景下的有序充电优化、V2G优化问题进行了仿真计算,并对成本效益进行了分析。考虑到未来参数的不确定性,对成本效益相关参数进行了灵敏度分析。分析结果表明,所提出的两阶段充放电优化控制模型能有效降低峰荷并平滑负荷曲线。同时可知,装机成本和电池寿命损耗成本的变化将对V2G的效益产生较大的影响,上网电价的变化则对V2G效益的影响较小。

关 键 词:电动汽车  有序充电  车辆到电网(V2G)  拉丁超立方抽样  整数规划
收稿时间:2011-10-21
修稿时间:2012-04-27

Coordinated Charging and Discharging of Large-scale Plug-in Electric Vehicles with Cost and Capacity Benefit Analysis
LUO Zhuowei,HU Zechun,SONG Yonghu,XU Zhiwei,YANG Yuexi,LIU Hui. Coordinated Charging and Discharging of Large-scale Plug-in Electric Vehicles with Cost and Capacity Benefit Analysis[J]. Automation of Electric Power Systems, 2012, 36(10): 19-26
Authors:LUO Zhuowei  HU Zechun  SONG Yonghu  XU Zhiwei  YANG Yuexi  LIU Hui
Affiliation:(State Key Lab of Power Systems,Department of Electrical Engineering,Tsinghua University,Beijing 100084,China)
Abstract:A two-stage optimal model is proposed to obtain the peak load shaving and the discharging energy in the vehicle-to-grid scenario.The Latin hypercube sampling method is adopted to sample the starting charging time and arrival state of charge to reduce the computation burden.The charging load of plug-in electric vehicles in 2020 and 2030 in China is simulated and the load profiles are compared with and without optimal control.Cost-benefit analysis in different scenarios are performed.Sensitivity analysis is performed to investigate the influence of several key parameters’ uncertainties on the cost and benefit of plug-in electric vehicle charging and discharging coordination.Simulation results show that the method proposed can effectively reduce the peak load and smooth the load curve.The installed cost and the battery life loss cost will significantly affect the capacity benefit of the charging and discharging control while the network power price will not. This work is supported by National High Technology Research and Development Program of China(863 Program)(No.2011AA05A110,No.2012AA050211) and National Natural Science Foundation of China(No.51107060).
Keywords:electric vehicle  coordinated charging  vehicle to grid (V2G)  Latin hypercube sampling  integer programming
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电力系统自动化》浏览原始摘要信息
点击此处可从《电力系统自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号