首页 | 本学科首页   官方微博 | 高级检索  
     

发电机单机无穷大系统动力学模型的理论研究
引用本文:曾云,沈祖诒,曹林宁. 发电机单机无穷大系统动力学模型的理论研究[J]. 中国电机工程学报, 2008, 28(17): 138-143
作者姓名:曾云  沈祖诒  曹林宁
作者单位:河海大学水利水电工程学院,江苏省南京市,210098
摘    要:将动力学方法用于发电机及电力系统分析和控制时,能量函数的物理意义不明确。根据分析动力学原理,分析单机无穷大系统的能量关系,分别给出了各子系统的拉格朗日函数、耗散函数和广义外力形式,进而导出了整个系统的拉格朗日-麦克斯韦方程组,用统一的动力学观点描述系统的运动。导出了系统的哈密顿函数,并将系统转化为广义哈密顿控制系统。最后,给出了相应于传统3阶发电机模型的哈密顿函数和控制模型,并进行了仿真对比。仿真结果表明,这种方法获得的哈密顿模型能提供更多的信息。

关 键 词:发电机  拉格朗日函数  哈密顿函数  广义哈密顿控制模型  分析动力学原理
收稿时间:2007-04-06

Theoretical Study on Dynamical Model of Single-machine-infinite-bus System
ZENG Yun,SHEN Zu-yi,CAO Lin-ning. Theoretical Study on Dynamical Model of Single-machine-infinite-bus System[J]. Proceedings of the CSEE, 2008, 28(17): 138-143
Authors:ZENG Yun  SHEN Zu-yi  CAO Lin-ning
Affiliation:College of Water Conservancy and Hydropower Engineering, Hohai UniversityCollege of Water Conservancy and Hydropower Engineering, Hohai UniversityCollege of Water Conservancy and Hydropower Engineering, Hohai University
Abstract:The physical meaning of energy function is indefinite when dynamical approaches are used to analyze and control generator or power system. The analytical dynamical principle was applied to analyze the energy relation of single-machine infinite-bus system and establish Lagrange function, dissipation function and generalized force functions of each subsystem. The Lagrange-Maxwell equations of the whole system, which describes system performance from dynamical viewpoint, were derived. The Hamiltonian function of this system was deduced and the system was inverted to generalized Hamiltonian control model. At last, the Hamiltonian function and control model were considered as a third-order system,and were compared with other Hamiltonian models by simulating.Simulation indicates that this model can provide more information than other.
Keywords:generator  Lagrangian function  Hamiltonian function  generalized Hamiltonian controlled model  analytical dynamical principle
本文献已被 万方数据 等数据库收录!
点击此处可从《中国电机工程学报》浏览原始摘要信息
点击此处可从《中国电机工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号