Hybrid multi/single layer array transducers for increased signal-to-noise ratio |
| |
Authors: | Goldberg R L Emery C D Smith S W |
| |
Affiliation: | Dept. of Cell Biol. and Anatomy, North Carolina Univ., Chapel Hill, NC. |
| |
Abstract: | In medical ultrasound imaging, two-dimensional (2-D) array transducers are necessary to implement dynamic focusing in two dimensions, phase correction in two dimensions and high speed volumetric imaging. However, the small size of a 2-D array element results in a small clamped capacitance and a large electrical impedance, which decreases the transducer signal-to-noise ratio (SNR). We have previously shown that SNR is improved using transducers made from multi-layer PZT, due to their lower electrical impedance. In this work, we hypothesize that SNR is further increased using a hybrid array configuration: in the transmit mode, a 10 Omega electronic transmitter excites a 10 Omega multi-layer array element; in the receive mode, a single layer element drives a high impedance preamplifier located in the transducer handle. The preamplifier drives the coaxial cable connected to the ultrasound scanner. For comparison, the following control configuration was used: in the transmit mode, a 50 Omega source excites a single layer element, and in the receive mode, a single layer element drives a coaxial cable load. For a 5x102 hybrid array operating at 7.5 MHz, maximum transmit output power was obtained with 9 PZT layers according to the KLM transmission line model. In this case, the simulated pulse-echo SNR was improved by 23.7 dB for the hybrid configuration compared to the control. With such dramatic improvement in pulse-echo SNR, low voltage transmitters can be used. These can be fabricated on integrated circuits and incorporated into the transducer handle. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|