首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of polarized and depolarized arrest in the isolated rat heart for long-term preservation
Authors:AK Snabaitis  MJ Shattock  DJ Chambers
Affiliation:Cardiac Surgical Research and Cardiovascular Research, The Rayne Institute, St Thomas' Hospital, London, UK.
Abstract:BACKGROUND: Hypothermic hyperkalemic cardioplegic solutions are currently used for donor heart preservation. Hyperkalemia-induced depolarization of the resting membrane potential (Em) may predispose the heart to Na+ and Ca2+ loading via voltage-dependent "window currents," thereby exacerbating injury and limiting the safe storage duration. Alternatively, maintaining the resting Em with a polarizing solution may reduce ionic movements and improve postischemic recovery; we investigated this concept with the reversible sodium channel blocker tetrodotoxin (TTX) to determine (1) whether polarized arrest was more efficacious than depolarized arrest during hypothermic long-term myocardial preservation and (2) whether TTX induces and maintains polarized arrest. METHODS AND RESULTS: The isolated crystalloid-perfused working rat heart preparation was used in this study. Preliminary studies determined an optimal TTX concentration of 22 micromol/L and an optimal storage temperature of 7.5 degrees C. To compare depolarized and polarized arrest, hearts were arrested with either Krebs-Henseleit (KH) buffer (control), KH buffer containing 16 mmol/L K+, or KH buffer containing 22 micromol/L TTX and then stored at 7.5 degrees C for 5 hours. Postischemic recovery of aortic flow was 13+/-4%, 38+/-2%, and 48+/-3%* (*P<.05 versus control and 16 mmol/L K+), respectively. When conventional 3 mol/L KCl-filled intracellular microelectrodes were used, Em gradually depolarized during control unprotected ischemia to approximately -55 mV before reperfusion, whereas arrest with 16 mmol/L K+ caused rapid depolarization to approximately -50 mV, where it remained throughout the 5-hour storage period. In contrast, in 22 micromol/L TTX-arrested hearts, Em remained more polarized, at approximately -70 mV, for the entire ischemic period. CONCLUSIONS: Blockade of cardiac sodium channels by TTX during ischemia maintained polarized arrest, which was more protective than depolarized arrest, possibly because of reduced ionic imbalance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号