首页 | 本学科首页   官方微博 | 高级检索  
     

灰色动态神经网络模型及其应用
引用本文:岳建平. 灰色动态神经网络模型及其应用[J]. 水利学报, 2003, 34(7): 120-123
作者姓名:岳建平
作者单位:河海大学,土木工程学院,江苏,南京,210098
摘    要:介绍了灰色动态神经网络的基本原理,分析了传统误差反向传播(BP)算法所存在的缺陷,并提出了解决这些问题的主要途径。根据灰色系统理论,对大坝安全监控模型的因子集进行优化,选择有显著影响的因子建立模型,能明显减少计算工作量,提高工作效率。利用对隐含层结点数的动态调整,有效地解决了隐含层结点数难以确定的矛盾,同时,通过两组样本的相互校验,使训练后的网络预测精度更高。最后,以大坝安全监控模型为实例,对该模型的精度等进行了分析。

关 键 词:神经网络  动态模型  灰色系统
文章编号:0559-9350(2003)07-0120-04
修稿时间:2002-02-26

Gray dynamic neural network model and its application to dam safety monitoring
YUE Jianping. Gray dynamic neural network model and its application to dam safety monitoring[J]. Journal of Hydraulic Engineering, 2003, 34(7): 120-123
Authors:YUE Jianping
Abstract:The elementary principle of gray dynamic neural network model is introduced. Some limitations, which are often occurred in the establishment of monitoring and controlling model for dam safety with BP model, are analyzed and discussed. The methods for solving these problems are suggested. The genes used to erect the dam safety monitoring and controlling models are optimized with gray system method. Since only two notable genes are necessary for erection of the models, the effeciency of calculation is enhanced. The difficulty of determining the crunode amount of implicit layer is solved by means of adjusting the crunode amount dynamically. The forecasting precision is greatly elevated by the training. An example is given for demonstration.
Keywords:neural network   dynamic model   gray system   monitoring and controlling model   dam safety
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《水利学报》浏览原始摘要信息
点击此处可从《水利学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号