首页 | 本学科首页   官方微博 | 高级检索  
     


Cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and phenols in contaminated soil slurries
Authors:Allan Ian J  Semple Kirk T  Hare Rina  Reid Brian J
Affiliation:School of Environmental Sciences, University of East Anglia, NR4 7TJ Anglia, United Kingdom. ian.allan@port.ac.uk
Abstract:This work aimed to evaluate the relative contribution of soil catabolic activity, contaminant bioaccessibility, and nutrient levels on the biodegradation of field-aged polycyclic aromatic hydrocarbons and phenolic compounds in three municipal gas plant site soils. Extents of biodegradation achieved, in 6 week-long soil slurry assays, under the following conditions were compared: (i) with inoculation of catabolically active PAH and phenol-degrading microorganisms, (ii) with and without hydroxypropyl-beta-cyclodextrin supplementation (HPCD; 100 g L(-1)), and finally (iii) with the provision of additional inorganic nutrients in combination with HPCD. Results indicated no significant (p < 0.05) differences between biodegradation endpoints attained in treatments inoculated with catabolically active microorganisms as compared with the uninoculated control. Amendments with HPCD significantly (p < 0.05) lowered biodegradation endpoints for most PAHs and phenolic compounds. Only in one soil did the combination of HPCD and nutrients consistently achieve better bioremediation endpoints with respect to the HPCD-only treatments. Thus, for most compounds, biodegradation was not limited by the catabolic activity of the indigenous microorganisms but rather by processes resulting in limited availability of contaminants to degraders. It is therefore suggested that the bioremediation of PAH and phenol impacted soils could be enhanced through HPCD amendments. In addition, the biodegradability of in situ and spiked (deuterated analogues) PAHs following 120 days aging of the soils suggested that this contact time was not sufficient to obtain similar partitions to that observed for field-aged contaminants; with the spiked compounds being significantly (p < 0.05) more available for biodegradation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号