首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and properties of poly (p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding
Authors:Jinghui Yang  Tao Xu  Ai Lu  Qin Zhang  Hong Tan  Qiang Fu
Affiliation:1. Department of Polymer Materials, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, China;2. Institute of Chemical Materials, Academy of Engineering Physics of China, Mianyang, China;3. Key Laboratory of Rubber-plastics (Qingdao University of Science and Technology), Ministry of Education, China
Abstract:In this paper, electrical and mechanical properties of Poly (p-phenylene sulfide) (PPS)/multi-wall carbon nanotubes (MWNTs) nanocomposites were reported. The composites were obtained just by simply melt mixing PPS with raw MWNTs without any pre-treatment. The dispersion of MWNTs and interfacial interaction were investigated through SEM &TEM and Raman spectra. The rheological test and crystallization behavior were also investigated to study the effects of MWNTs concentration on the structure and chain mobility of the prepared composites. Though raw MWNTs without any pre-treatment were used, a good dispersion and interaction between PPS and MWNTs have been evidenced, resulting in a great improvement of electrical properties and mechanical properties of the composites. Raman spectra showed a remarkable decrease of G band intensity and a shift of D bond, demonstrating a strong filler–matrix interaction, which was considered as due to π–π stacking between PPS and MWNTs. The storage modulus (G′) versus frequency curve presented a plateau above the percolation threshold of about 2–3 wt% with the formation of an interconnected nanotube structure, indicative of ‘pseudo-solid-like’ behavior. Meanwhile, a conductive percolation threshold of 5 wt% was achieved and the conductivity of nanocomposites increased sharply by several orders of magnitude. The difference between electrical and rheological percolation threshold, and the effect of critical percolation on the chain mobility, especially on crystallization behavior of PPS, were discussed. In summary, our work provides a simple and fast way to prepare PPS/MWNTs nanocomposites with good dispersion and improved properties.
Keywords:A  Nano composites  A  Carbon nanotubes  B  Mechanical properties  B  Electrical properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号