首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度强化学习的燃料电池混合动力汽车能量管理策略研究
引用本文:李 卫,郑春花,许德州. 基于深度强化学习的燃料电池混合动力汽车能量管理策略研究[J]. 集成技术, 2021, 10(3): 47-60
作者姓名:李 卫  郑春花  许德州
作者单位:中国科学院深圳先进技术研究院 深圳 518055;中国科学院大学 北京 100049;中国科学院深圳先进技术研究院 深圳 518055;中国科学院深圳先进技术研究院 深圳 518055;中国矿业大学 徐州 221116
基金项目:深圳市海外高层次人才创新创业计划项目(KQJSCX20180330170047681);深圳无人驾驶感知决策与执行技术工程实验室计划项目 (Y7D004);深圳电动汽车动力平台与安全技术重点实验室计划项目
摘    要:为提高燃料电池混合动力汽车的燃油经济性和燃料电池寿命,该文提出一种基于深度强化学习(Deep Reinforcement Learning,DRL)的能量管理策略.该策略首先在DRL奖励信号中加入寿命因子,通过降低燃料电池功率波动,起到延长燃料电池寿命的效果;其次,通过限制DRL的动作空间的方法,使燃料电池系统工作在高...

关 键 词:燃料电池混合动力汽车  能量管理策略  深度强化学习  寿命增强  动作空间限制  强化学习

Research on Energy Management Strategy of Fuel Cell Hybrid Vehicles Based on Deep Reinforcement Learning
LI Wei,ZHENG Chunhu,XU Dezhou. Research on Energy Management Strategy of Fuel Cell Hybrid Vehicles Based on Deep Reinforcement Learning[J]. , 2021, 10(3): 47-60
Authors:LI Wei  ZHENG Chunhu  XU Dezhou
Affiliation:Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; China University of Mining and Technology, Xuzhou 221116, China
Abstract:In order to improve the fuel economy and fuel cell lifetime of fuel cell hybrid vehicles, this research proposes an energy management strategy based on deep reinforcement learning (DRL). The strategy first adds a lifetime factor to reward signal of DRL, the lifetime of fuel cell is extended by limiting the power fluctuation. Then, the fuel cell system works in a high efficiency range by limiting the action space of DRL, improving the efficiency of the entire vehicle. After offline training under UDDS, WLTC, and Japan1015, it is applied in real time under NEDC to verify the adaptability of the proposed strategy. The results show that the proposed strategy can converge quickly in offline training, which proves its stability. Compared with dynamic programming-based strategy, the fuel economy difference in training cycles is only 5.58%, 3.03% and 4.65%, which is close to the optimal, and the promotion is 4.46%, 7.26% and 5.35% compared with reinforcement learning-based strategy. Compared with the DRL-based strategy without a lifetime factor, the proposed strategy reduces the average power fluctuation by 10.27%, 47.95%, and 10.85% under training cycles, which is beneficial to improve the fuel cell lifetime. In the real-time application, the fuel economy of the proposed strategy is improved by 3.39% compared with the reinforcement learningbased strategy, which proves its adaptability to unknown cycles.
Keywords:fuel cell hybrid vehicle   energy management strategy   deep reinforcement learning   lifetime enhancement   action space limitation   reinforcement learning
本文献已被 万方数据 等数据库收录!
点击此处可从《集成技术》浏览原始摘要信息
点击此处可从《集成技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号