首页 | 本学科首页   官方微博 | 高级检索  
     

快速多重旋转碾压诱导Ti-6Al-4V表面纳米晶及性能研究
引用本文:杨晓洁,常雪婷,范润华.快速多重旋转碾压诱导Ti-6Al-4V表面纳米晶及性能研究[J].表面技术,2021,50(5):177-183.
作者姓名:杨晓洁  常雪婷  范润华
作者单位:上海海事大学 海洋科学与工程学院,上海 201306;山东省产品质量检验研究院,济南 250100;上海海事大学 海洋科学与工程学院,上海 201306
基金项目:国家重点研发计划(2016YFB0300700);上海市教委曙光计划项目(19SG46);上海市自然科学基金(17ZR1440900);科技部国际合作交流项目(CU03-29);山东省高校科技计划项目(J17KA017);上海深远海洋装备材料工程技术研究中心项目(19DZ2253100)
摘    要:目的 使Ti-6Al-4V能更好地应用于海洋领域.方法 采用快速多重旋转碾压技术(FMRR)对Ti-6Al-4V表面进行冷变形处理,研究其力学性能.然后,对其进行低温等离子渗氮,渗氮温度为550℃,保温时间4 h.利用高分辨透射电子显微镜(HRTEM)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)和电子显微硬度计等测试设备,对FMRR处理后的Ti-6Al-4V表层组织结构和性能以及等离子渗氮处理后表层组织结构进行表征.结果 经15、30、45 min的FMRR处理后,Ti-6Al-4V表层晶粒细化并获得了纳米结构,对应的平均晶粒尺寸为65~90、45~70和20~40 nm.此时,晶界明显增多,局部存在孪晶、小角度晶界和高密度位错等结构缺陷,电子衍射环连续.同时,Ti-6Al-4V表层结构未出现新相,晶粒细化导致衍射峰略有变宽,也提高了Ti-6Al-4V表面的显微硬度,显微硬度为325~453HV,比处理前提高了约41%.FMRR预处理的试样经过低温等离子渗氮后,基体表面的渗氮层主要包括白色化合物层和过渡层两个区域.结论 FMRR处理为后续低温渗氮提供了能量条件和结构条件,提高了渗氮的速度,最终的渗氮层厚度约为100μm.

关 键 词:FMRR  渗氮  纳米晶  Ti-6Al-4V  位错
收稿时间:2020/4/17 0:00:00
修稿时间:2020/8/31 0:00:00

Study on Microstructure and Properties of Ti-6Al-4V Alloy Nanocrystallized by Fast Multiple Rotation Rolling
YANG Xiao-jie,CHANG Xue-ting,FAN Run-hua.Study on Microstructure and Properties of Ti-6Al-4V Alloy Nanocrystallized by Fast Multiple Rotation Rolling[J].Surface Technology,2021,50(5):177-183.
Authors:YANG Xiao-jie  CHANG Xue-ting  FAN Run-hua
Affiliation:College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China;Shandong Institute for Product Quality Inspection, Jinan 250100, China
Abstract:This work aims to improve the application of Ti-6Al-4V alloy in maritime field. Fast multiple rotation rolling (FMRR) technique was applied to create a nanostructure layer on Ti-6Al-4V surface. The mechanical properties were also investigated. Then the FMRR samples were plasma nitrided at a temperature as low as 550 °C with the duration of 4 h. The microstructure and properties of FMRR samples and nitrided samples were characterized by high resolution transmission electron microscopy (HRTEM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), microhardness testers and optical microscopy (OM). Results indicated that FMRR can cause surface nanocrystallization with the average grain size of 65~90 nm, 45~70 nm and 20~40 nm, when the duration was 15 min, 30 min and 45 min respectively. Twins, low angle grain boundaries and high-density dislocations were observed in the surface of FMRR samples. The SAED pattern was composed of continuous diffraction rings. No new phase was induced in the top surface of Ti-6Al-4V by FMRR treatment. The diffraction peaks of FMRR samples were broader compared with the original samples. The microhardness was improved from 325HV in the matrix to about 453HV in the top surface layer. The nitrided layer in the top surface of FMRR sample after plasma nitriding included a bright compound layer and a transition layer. Conclusion:FMRR treatment provides additional energy and structures for the subsequent nitriding at lower temperature, thus leading to an increase in nitriding rate and a roughly 100 µm thick.
Keywords:FMRR  nitriding  nanocrystalline  Ti-6Al-4V  dislocation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《表面技术》浏览原始摘要信息
点击此处可从《表面技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号