首页 | 本学科首页   官方微博 | 高级检索  
     

基于综合评价的SiCp/Al磨削表面质量试验
引用本文:赵旭,巩亚东,张伟健,韩冰. 基于综合评价的SiCp/Al磨削表面质量试验[J]. 表面技术, 2021, 50(5): 329-339. DOI: 10.16490/j.cnki.issn.1001-3660.2021.05.037
作者姓名:赵旭  巩亚东  张伟健  韩冰
作者单位:东北大学 机械工程与自动化学院,沈阳 110819;辽宁科技大学 机械工程与自动化学院,辽宁 鞍山 114051;东北大学 机械工程与自动化学院,沈阳 110819;辽宁科技大学 机械工程与自动化学院,辽宁 鞍山 114051
基金项目:辽宁科技大学人才项目资助(601011507-19);国家自然科学基金(51775100)
摘    要:目的 针对高体积分数SiCp/Al加工表面缺陷复杂多样,提出其表面质量综合评价方法,研究磨削参数对SiCp/Al磨削表面质量的耦合影响规律,优化加工工艺.方法 基于SiCp/Al磨削加工表面缺陷,提出粗糙度综合指标SR为主、表面形貌为辅的表面质量综合评价方法,采用全因子试验方法分析低、高进给速度工况下主轴转速和磨削深度...

关 键 词:高体积分数SiCp/Al  磨削  表面质量  粗糙度综合指标  全因子试验
收稿时间:2020-10-14
修稿时间:2020-12-12

Experiment of Grinding Surface Quality of SiCp/Al Based on a Synthetical Assessment Method
ZHAO Xu,GONG Ya-dong,ZHANG Wei-jian,HAN Bing. Experiment of Grinding Surface Quality of SiCp/Al Based on a Synthetical Assessment Method[J]. Surface Technology, 2021, 50(5): 329-339. DOI: 10.16490/j.cnki.issn.1001-3660.2021.05.037
Authors:ZHAO Xu  GONG Ya-dong  ZHANG Wei-jian  HAN Bing
Affiliation:School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China;School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan 114051, China
Abstract:The work aims to propose a synthetical surface quality assessment method and analyze the influence of process parameters on the surface quality of high volume fraction SiCp/Al, as well as optimize the grinding process in order to solve severe and complex surface defects of machined SiCp/Al. Surface defects of machined SiCp/Al were observed via SEM to present a synthetical assessment method based on primarily the overall surface roughness indicator SR which integrates multiple indicators and secondly surface topography. The full factor experiments were carried out to analyze influence of spindle speed and grinding depth on surface quality at low and high feed rate conditions separately. Abaqus simulation was conducted to reveal formation mechanism of grinded SiCp/Al surface and then explain the experimental results. During the experiment, at smaller grinding depths (ap were 5 mm and 20 mm), the overall surface roughness indicator SR progressively decreased first as the spindle speed ns increased) and then increased as ns increased; at larger grinding depths (ap were 40 mm and 80 mm), SR progressively or approximately decreased as ns increased from 2000 r/min to 8000 r/min. Conversely, at lower spindle speeds (ns were 2000 r/min and 4000 r/min), SR increased first and decreased second and then increased as ap increased from 5 mm to 80 mm; at higher spindle speeds (ns were 6000 r/min and 8000 r/min), SR increased first as ap increased and then decreased at low feed rate or increased at high feed rate as ap increased. The optimized grinding parameters for the best grinding surface quality included feed rate of 50 mm/min, grinding depth of 5 mm and spindle speed of 6000 r/min; and the one for both grinding efficiency and surface quality included feed rate of 50 mm/min, grinding depth of 80 mm and spindle speed of 8000 r/min. Therefore, the synthetical assessment method of machined SiCp/Al surface has high reliability, the influences of spindle speed and grinding depth on the surface quality present coupling nature. Decreasing grinding depth and adopt appropriate spindle speed can improve the surface quality.
Keywords:high volume fraction SiCp/Al   grinding   surface quality   overall surface roughness indicator   full factor experiment
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《表面技术》浏览原始摘要信息
点击此处可从《表面技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号