首页 | 本学科首页   官方微博 | 高级检索  
     

基于FRFT的齿轮振动信号故障特征提取
引用本文:付霖宇,张鑫,程永茂. 基于FRFT的齿轮振动信号故障特征提取[J]. 计测技术, 2013, 0(6): 26-30
作者姓名:付霖宇  张鑫  程永茂
作者单位:海军航空工程学院兵器科学与技术系,山东烟台264001
基金项目:国家自然科学基金资助项目(60902054);中国博士后科学基金资助项目(20090460114,201003758)
摘    要:研究了典型齿轮故障振动信号在分数阶傅里叶变换(FRVF)域的分布特征,并在此基础上分析了该信号在FRFT循环域(CFRFD)的分布特征,提出了FRFT循环处理(CFRFT)方法,实现了信号在CFRFD的能量积累。通过仿真实验验证了低信噪比条件下,CFRFT对齿轮振动信号的故障特征提取能力及有效性。

关 键 词:齿轮故障  分数阶傅里叶变换  循环处理  特征提取

Fault Feature Extraction of Gear Vibration Signal Based on FRFT Method
FU Linyu,ZHANG Xin,CHENG Yongmao. Fault Feature Extraction of Gear Vibration Signal Based on FRFT Method[J]. Metrology & Measurement Technology, 2013, 0(6): 26-30
Authors:FU Linyu  ZHANG Xin  CHENG Yongmao
Affiliation:(Department of Ordnance Science and Technology, Naval Aeronautical and Astronautical University, Yantai 264001, China)
Abstract:The distribution characteristics of typical gear fault vibration signals in the Fractional Fourier Transform (FRFT) domain are stud-ied. The distribution characteristics of the signals in the Fractional Fourier Transform Cyclic Processing domain (CFRFD) are analyzed. The FRFT cyclic processing method (CFRFT) is presented, which achieves energy accumulation of the signals in CFRFD. Simulation experiments results verify CFRFT ability and validity on fault feature extraction of gear vibration signals in low SNR condition.
Keywords:gear fault  Fractional Fourier Transform  cyclic processing  feature extraction
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号