首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-scale domain structure observation and piezoelectric responses for [001]-oriented PMN-33PT single crystal
Authors:Kaiyue Fang  Wenqi Jing  Fei Fang
Affiliation:School of Aerospace, Tsinghua University, Beijing, China
Abstract:Multiple phase coexistence contributes to the extraordinary piezoelectric behavior of (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (PMN–xPT) near the morphotropic phase boundaries (MPBs). By incorporating an optical path of crossed polarized light (PLM) into the commercialized Piezoelectric Force Microscope (PFM) (named as PLM-PFM system), in situ domain structure observation from micro- to nanoscale, as well as measurement of the piezoelectric behavior for individual domains can be realized. For 001]-oriented single crystal of 67Pb(Mg1/3Nb2/3)O3-33PbTiO3 (PMN-33PT), fine domain boundary structures of rhombohedral (R), tetragonal (T), and monoclinic (M) phases are revealed. Measurements of the electric field-induced displacement as a function of the applied DC electric field (VDC) are performed for domains with different polarization vectors. Values for the electric field-induced displacement are in descending order for c-domains of the M, R, and T phases. For an individual phase of T or M, the displacement increases when the angle between the polarization vector and the applied electric field decreases. The multi-scale perspective of the domain structures and the corresponding piezoelectric response helps in understanding the ultra-high piezoelectric performance for PMN-PT single crystals near MPB.
Keywords:electromechanical properties  ferroelectricity/ferroelectric materials  lead magnesium niobates  microstructure  morphotropic phase boundary
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号