首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of ZrC amount and distribution on the thermomechanical properties of Cf/SiC-ZrC composites
Authors:Haijun Zhou  Jinshan Yang  Gao Le  Dewei Ni  Hongda Wang  Shaoming Dong
Affiliation:1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China

Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China

Suzhou Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Jiangsu, China;2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China;3. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China

Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China

Abstract:Cf/SiC-ZrC composites with different amounts and distributions of ZrC were fabricated by polymer impregnation and pyrolysis. The effects of the ZrC amount and distribution on the microstructural, mechanical, and ablation properties of Cf/SiC-ZrC composites were investigated. Cf/SiC-ZrC composites obtained by the alternating infiltration of ZrC organic precursors and polycarbosilane groups exhibit good tensile strength (240 ± 17.7 MPa) because the ZrC and SiC matrix can mix evenly. However, Cf/SiC-ZrC composites using only ZrC organic precursor infiltration show a low tensile strength (191 ± 16.6 MPa) because more defects can be introduced into the composites. Ablation characterization by a 30 kW plasma wind tunnel for 60 seconds showed that the Cf/SiC-ZrC composites with the highest amount of ZrC matrix (67.8 wt.%) possessed the lowest linear erosion rate of 4 μm/s because liquid SiO2 could fill the porous ZrO2 to form a homogenous protective layer. Nevertheless, the Cf/SiC-ZrC composites with a relatively high ZrC amount (55.3 wt.%) exhibited a poorer ablation performance compared to that of Cf/SiC-ZrC composites with a low ZrC amount (38.7 wt.%).
Keywords:ablation properties  ceramic matrix composites  mechanical properties  polymer precursor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号