首页 | 本学科首页   官方微博 | 高级检索  
     


Seasonal landscape and spectral vegetation index dynamics in the Brazilian Cerrado: An analysis within the Large-Scale Biosphere-Atmosphere Experiment in Amazônia (LBA)
Authors:LG FerreiraH Yoshioka  A Huete  EE Sano
Affiliation:a Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ 85721, USA
b Brazilian Agricultural Research Organization (Embrapa Cerrados), BR-020, Km 18, Cx. Postal 08223, Planaltina-DF, 73301-970, Brazil
Abstract:The Brazilian Cerrado biome comprises a vertically structured mosaic of grassland, shrubland, and woodland physiognomies with distinct phenology patterns. In this study, we investigated the utility of spectral vegetation indices in differentiating these physiognomies and in monitoring their seasonal dynamics. We obtained high spectral resolution reflectances, during the 2000 wet and dry seasons, over the major Cerrado types at Brasilia National Park (BNP) using the light aircraft-based Modland Quick Airborne Looks (MQUALS) package, consisting of a spectroradiometer and digital camera. Site-intensive biophysical and canopy structural measurements were made simultaneously at each of the Cerrado types including Cerrado grassland, shrub Cerrado, wooded Cerrado, Cerrado woodland, and gallery forest. We analyzed the spectral reflectance signatures, their first derivative analogs, and convolved spectral vegetation indices (VI) over all the Cerrado physiognomies. The high spectral resolution data were convolved to the MODIS, AVHRR, and ETM+ bandpasses and converted to the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) to simulate their respective sensors. Dry and wet season comparisons of the measured biophysical attributes were made with the reflectance and VI data for the different Cerrado physiognomies. We found that three major domains of Cerrado could be distinguished with the dry and wet season spectral signatures and vegetation indices. The EVI showed a higher sensitivity to seasonality than the NDVI; however, both indices displayed seasonal variations that were approximately one-half that found with the measured landscape green cover dynamics. Inter-sensor comparisons of seasonal dynamics, based on spectral bandpass properties, revealed the ETM+-simulated VIs had the best seasonal discrimination capability, followed by MODIS and AVHRR. Differences between sensor bandpass-derived VI values, however, varied with Cerrado type and between dry and wet seasons, indicating the need for inter-sensor VI translation equations for effective multi-sensor applications.
Keywords:Vegetation index  Brazilian Cerrado  LBA-Ecology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号