首页 | 本学科首页   官方微博 | 高级检索  
     


A novel microbial BOD biosensor developed by the immobilization of P. Syringae in micro‐cellular polymers
Authors:Serdar Kara  Bülent Keskinler  Elif Erhan
Affiliation:Department of Environmental Engineering, Gebze Institute of Technology, Muallimkoy Campus, 41400, Kocaeli, Turkey
Abstract:BACKGROUND: A biochemical oxygen demand (BOD) sensor, based on an immobilized Pseudomonas syringae in highly porous micro‐cellular polymer (MCP) in combination with a dissolved oxygen electrode, has been developed for the analysis of biodegradable organic compounds in aqueous samples. Microorganisms were immobilized in a molded MCP disk and a wastewater sample was injected into the biocomposite disk by a flow injection system. Dissolved oxygen (DO) changes as a measure of soluble BOD was read with a DO probe placed into a flow cell carrying biocatalytically activated disk. RESULTS: Optimal response of the MCP BOD sensor was obtained at pH 6.8 and 25 °C with a typical response time of 3–5 min for a 2 mm thick molded polymeric disk. The sensor showed detection linearity over the range 5–100 mg L?1 BOD5 (r2 > 0.99) at a flow rate of 0.6 mL min?1. The repeatability and reproducibility of the sensor response were found to be 3.08% and 7.77%, respectively. BOD values produced with this biosensor for various municipal and industrial wastewaters correlated well with those determined by the conventional 5‐day BOD test. CONCLUSION: This new biosensor was different from present amperometric BOD biosensor configurations in which the biocatalyst (microbial/enzymatic) is placed between cellulose and Teflon membranes installed on a DO probe. The use of a molded MCP disk coniainng microbial activity offers better stability and lifetime for commercial use in environmental monitoring. Copyright © 2008 Society of Chemical Industry
Keywords:micro‐cellular  biochemical oxygen demand (BOD)  Pseudomonas syringae  immobilized microorganisms  biosensor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号