首页 | 本学科首页   官方微博 | 高级检索  
     


Batch treatment of liquid fraction of pig slurry by intermittent aeration: process simulation and microbial community analysis
Authors:Albert Magrí  Miriam Guivernau  Guillermo Baquerizo  Marc Viñas  Francesc X Prenafeta‐Boldú  Xavier Flotats
Affiliation:GIRO Technological Centre, Rambla Pompeu Fabra 1, E‐08100 Mollet del Vallès, Barcelona, Spain
Abstract:BACKGROUND: Manure treatment in intensive livestock farming is required to reduce the risk of negative environmental impacts by nitrogen disposal. Biological removal through intermittent aeration in a single bioreactor is a suitable method for this purpose. The characteristic operation based on the alternation of oxic/anoxic phases confers these systems with certain particularities in terms of process modelling and of understanding the microbial interactions. RESULTS: The performance of a sequencing batch reactor (SBR) treating raw liquid fraction of pig slurry (LFPS) under loading rates of 0.13 g N L?1 d?1 was studied. Three different aeration strategies were applied: (1) constant airflow; (2) dissolved oxygen (DO) set‐point; and (3) DO‐based real‐time control. The comparatively low aeration intensity applied throughout the third strategy resulted in the process being performed mainly via nitrite, implying a reduction on the requirements of organic carbon and oxygen. However, a decrease in the nitrification rate was observed under those conditions. Experimental results were satisfactorily simulated by a mathematical model focused on organic carbon and nitrogen removal. Microbial community structure analysis through denaturing gradient gel electrophoretic profiling of 16S rDNA genes showed that the aeration exerted a strong influence on the dominant microbial populations. The presence of the ammonia‐oxidizing species Nitrosomonas europaea, and of denitrifying bacteria related to Thauera sp. and Ralstonia sp., was detected in the strategy at low DO. CONCLUSION: Dependence of model statement and parameter values on the bioreactor operational patterns and piggery wastewater composition was evidenced. Oxygen limitation was responsible for a significant microbial shift in SBR treating LFPS. Copyright © 2009 Society of Chemical Industry
Keywords:swine manure  nitrogen removal  nitrification–  denitrification (NDN)  mathematical modelling  denaturing gradient gel electrophoresis (DGGE)  16S rDNA
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号