首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于冲击信号聚类分析的轴承故障诊断方法
引用本文:金盾,柳小勤,伍星. 一种基于冲击信号聚类分析的轴承故障诊断方法[J]. 机械与电子, 2011, 0(12): 3-5
作者姓名:金盾  柳小勤  伍星
作者单位:昆明理工大学机电工程学院;
基金项目:云南省教育厅科学研究基金资助项目(2010Y380)
摘    要:为了对旋转机械内轴承的运行状态进行故障监测和诊断,在对振动冲击信号进行分段截取的基础上,提出了基于分段信号时、频域特征提取结合模糊K聚类的滚动轴承故障诊断方法,并将该方法应用于NU205轴承故障诊断中。

关 键 词:故障诊断  特征提取  模糊聚类分析    动轴承

A Method for Bearing Diagnosis Based on Clustering Analysis of Impact Signals
JIN Dun,LIU Xiao-qin,WU Xing. A Method for Bearing Diagnosis Based on Clustering Analysis of Impact Signals[J]. Machinery & Electronics, 2011, 0(12): 3-5
Authors:JIN Dun  LIU Xiao-qin  WU Xing
Affiliation:JIN Dun,LIU Xiao-qin,WU Xing(Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650093,China)
Abstract:In order to monitor and diagnose the fault of the bearings' running state in the rotating machinery,a method of rolling bearing fault diagnosis based on the frequency domain feature extraction and fuzzy K clustering of sub-signals was proposed,which is on the basis of the interception on the vibration acceleration signal.The method was applied to fault diagnosis of bearings NU205.
Keywords:fault diagnosis  feature extraction  K-clustering  rolling bearing  
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号