首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of precipitation of Mg2Al3 and of MnAl6 on texture evolution during isothermal annealing and subsequently on formability of CC AA5182 Al alloy
Authors:Wei Wen   W. C. Liu  J. G. Morris
Affiliation:

Department of Chemical and Materials Engineering, 177 F. Paul Anderson Tower, University of Kentucky, Lexington, KY 40506, USA

Abstract:Continuous cast (CC) AA5182 Al alloy with the precipitation of Mg2Al3 and of MnAl6 was cold rolled to 70% reduction and then isothermally annealed in a salt bath at three temperatures (316, 343, and 371 °C) for different times. Texture evolution during recrystallization was investigated. It was found that the recrystallization textures of the material with intense Mg2Al3 precipitation along the grain boundaries exhibited weaker Cube, Goss and R/β fiber components than those of the material with the more uniform fine MnAl6 precipitates. The opposite was true in the cold rolled condition, i.e. the material with MnAl6 precipitation had weaker Cube, Goss, and R/β fiber components in the cold rolled condition than the material with intense Mg2Al3 precipitation. Thus, recrystallization textures of material with Mg2Al3 precipitation were weaker than material with MnAl6 precipitation. This is due to the fact that large Mg2Al3 particles favor the nucleation of randomly oriented grains. When subjected to formability tests, the material with prior Mg2Al3 precipitation displayed a lower anisotropy in tensile yield strength, ultimate tensile strength, elongation, and strain hardening exponent than material with prior MnAl6 precipitation. This is in accord with the texture results which indicated that the recrystallization textures of material with an initial Mg2Al3 precipitation were closer to those of a perfectly random sample than those of material with an initial MnAl6 precipitation. On the other hand, the elongation and Olsen values were lower and the surface quality after bending tests was worse for material with Mg2Al3 precipitation. This is due to the non-uniform distribution of Mg2Al3 particles which precipitated primarily along the grain boundaries and caused an earlier formation and coalescence of the microvoids around the grain boundary precipitates. The forming limit diagrams (FLD) correlated well with the tensile, Olsen and bending results.
Keywords:Precipitation   Texture evolution   Formability   Al alloy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号