首页 | 本学科首页   官方微博 | 高级检索  
     

Zr掺杂类金刚石薄膜摩擦性能及耐腐蚀性能的影响
引用本文:陈美容,曾宪光,孙德恩,黄佳木.Zr掺杂类金刚石薄膜摩擦性能及耐腐蚀性能的影响[J].表面技术,2017,46(6):138-142.
作者姓名:陈美容  曾宪光  孙德恩  黄佳木
作者单位:重庆大学 材料科学与工程学院,重庆,400030;四川理工学院 材料腐蚀与防护四川省重点实验室,四川 自贡,643000
基金项目:材料腐蚀与防护四川省重点实验室开放基金资助(2016CL13);重庆市基础与前沿研究计划项目(cstc2015jcyjA70005)
摘    要:目的改善不锈钢摩擦性能及耐腐蚀性能。方法通过线性阳极层离子源辅助非平衡磁控溅射法,制备了不同Zr含量的类金刚石(DLC)薄膜,采用扫描电子显微镜、拉曼光谱仪、纳米硬度仪、高温销盘磨损仪、电化学工作站,对薄膜的化学成分、显微结构、纳米硬度、薄膜摩擦性能及耐腐蚀性能进行测试研究。结果随着Zr靶功率的增大,Zr含量线性增加。Zr含量从4.9%增加至16.3%时,I_D/I_G增大,薄膜硬度从12.1 GPa逐渐下降至8.4 GPa;Zr含量增大至21.2%时,I_D/I_G减小,薄膜硬度增大至11.4 GPa。涂镀类金刚石薄膜的不锈钢基体比无涂层的不锈钢基体有更低的摩擦系数,更好的耐磨损性能。Zr掺杂DLC薄膜的最小摩擦系数为0.07。Zr含量从4.9%增加至16.3%,DLC薄膜的耐腐蚀性能减弱;Zr含量继续增加,DLC薄膜的耐腐蚀性能增强。当Zr含量不大于11.9%时,沉积Zr掺杂DLC膜的不锈钢基体的耐腐蚀性能比不锈钢基体的更强。结论 Zr含量不大于11.9%时,Zr掺杂类金刚石薄膜既可以有效地改善不锈钢基体的摩擦磨损性能,又可以大幅提高耐腐蚀性能。

关 键 词:Zr掺杂类金刚石膜  显微结构  硬度  结合力  摩擦性能  腐蚀性能
收稿时间:2016/12/22 0:00:00
修稿时间:2017/6/20 0:00:00

Effects on Tribological Properties and Corrosion Resistance of Zr-doped DLC Films
CHEN Mei-rong,ZENG Xian-guang,SUN De-en and HUANG Jia-mu.Effects on Tribological Properties and Corrosion Resistance of Zr-doped DLC Films[J].Surface Technology,2017,46(6):138-142.
Authors:CHEN Mei-rong  ZENG Xian-guang  SUN De-en and HUANG Jia-mu
Affiliation:School of Material Science and Engineering, Chongqing University, Chongqing 400030, China,Sichuan University of Science and Engineering, Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong 643000, China,School of Material Science and Engineering, Chongqing University, Chongqing 400030, China and School of Material Science and Engineering, Chongqing University, Chongqing 400030, China
Abstract:The work aims to improve tribological properties and corrosion resistance of stainless steel. Diamond-like carbon (DLC) films doped with different Zr content were prepared in the method of linear anode layer ion source-assisted unbalanced magnetron sputtering. Chemical composition, microstructure and nano-indentation hardness, tribological properties and corrosion resistance of the films were characterized with SEM, Raman spectrometer and nano-indentation tester, nano-indentation hardness tester, high temperature pin-on-disc tribometer and electrochemical workstation, respectively. As Zr target power increased, Zr content increased linearly. As Zr content increased from 4.9 at% to 16.3 at%, ID/IG increased gradually and film hardness decreased from 12.1 GPa to 8.4 GPa gradually; as Zr content increased to 21.2%, ID/IG decreased and film hardness increased to 11.4 GPa. Zr-doped DLC films had lower frictional coefficient and better wear resistance than uncoated stainless steel substrates. The minimum frictional coefficient of Zr-doped DLC films was 0.07. As Zr content increased from 4.9% to 16.3%, corrosion resistance of DLC films decreased; as Zr content increased continuously, corrosion resistance of the Zr-doped DLC films improved. Corrosion resistance of stainless steel substrates with Zr-doped DLC films was better than that of stainless steel substrate when Zr content was less than 11.9%. The Zr-doped DLC films can not only improve friction and wear properties of the stainless steel substrate effectively, but also enhance corrosion resistance substantially when Zr content is no more than 11.9%.
Keywords:Zr doped DLC films  microstructure  hardness  adhesion  tribological properties  corrosion resistance
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《表面技术》浏览原始摘要信息
点击此处可从《表面技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号