首页 | 本学科首页   官方微博 | 高级检索  
     

大尺寸平面磁控靶高功率脉冲放电的近基底表面光谱研究
引用本文:左潇,陈仁德,柯培玲,王铁钢,汪爱英. 大尺寸平面磁控靶高功率脉冲放电的近基底表面光谱研究[J]. 表面技术, 2017, 46(6): 117-124. DOI: 10.16490/j.cnki.issn.1001-3660.2017.06.018
作者姓名:左潇  陈仁德  柯培玲  王铁钢  汪爱英
作者单位:中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室,浙江 宁波 315201;中国科学院宁波材料技术与工程研究所 浙江省海洋材料与防护技术重点实验室,浙江 宁波 315201;天津职业技术师范大学 天津市高速切削与精密加工重点实验室,天津,300222
基金项目:国家自然科学基金项目(51375475,51301181);江西省重大研发专项(2015XTTD03,20161ACE50023)
摘    要:目的探索高功率脉冲磁控溅射方法在大尺寸平面磁控溅射Cr靶过程中,近基底表面等离子体区域内的活性粒子分布特性以及辐射跃迁过程,为HiPIMS的规模化应用提供实验基础和理论依据。方法选择不同高功率脉冲溅射脉冲电压、工作气压和耦合直流等关键沉积参数,采用等离子体发射光谱仪测量近基底表面等离子体区域内的光学发射光谱,分析原子特征谱线的种类、强度分布、离子谱线强度百分比、金属原子谱线含量等。结果当脉冲电压到达700 V后,基底表面的等离子体区域内的金属离化率显著提高;脉冲电压为600 V时,适当增加工作气压至5.0 mTorr,能有效提高到达基底的Cr激发态粒子含量,工作气压的升高会降低金属离化率。增加耦合直流在一定程度上降低了能到达基底的活性Cr~+和Cr~*原子含量,为了保持一定的活性粒子比例,耦合直流应当小于1.0 A。结论大面积高功率脉冲磁控溅射中的近表面等离子体区域内的主要活性粒子为Ar~+和Cr~*激发态原子,其主导的碰撞过程为Ar~+的电离复合过程和Cr~*的退激发过程,金属离化率还有待提高。

关 键 词:高功率脉冲磁控溅射  近基底表面区域  发射光谱  耦合直流
收稿时间:2017-01-23
修稿时间:2017-06-20

Optical Emission Spectroscopy Diagnosis of Plasma Near Substrate Surface in Large Scale Planar HiPIMS
ZUO Xiao,CHEN Ren-de,KE Pei-ling,WANG Tie-gang and WANG Ai-ying. Optical Emission Spectroscopy Diagnosis of Plasma Near Substrate Surface in Large Scale Planar HiPIMS[J]. Surface Technology, 2017, 46(6): 117-124. DOI: 10.16490/j.cnki.issn.1001-3660.2017.06.018
Authors:ZUO Xiao  CHEN Ren-de  KE Pei-ling  WANG Tie-gang  WANG Ai-ying
Affiliation:1. Key Laboratory of Marine Materials and Application Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 2. Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China,1. Key Laboratory of Marine Materials and Application Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 2. Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China,1. Key Laboratory of Marine Materials and Application Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 2. Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China,Tianjin Key Laboratory of High Speed Cutting and Precision Processing, Tianjin University of Technology and Education, Tianjin 300222, China and 1. Key Laboratory of Marine Materials and Application Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 2. Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract:The work aims to investigate the active particles distribution characteristics and radiative transition processes of near-substrate plasma region in large scale planar HiPIMS process for chromium target, so as to provide experimental basis and theoretical foundation for large-scale application of HiPIMS. Key deposition parameters including different pulse voltage, working air pressure and superimposed DC current in HiPIMS processes were selected. Plasma emission spectroscopy was utilized to measure optimal emission spectrum in near-substrate plasma region to analyze category of atomic characteristic spectral line, intensity distribution, ion line intensity percentage, metal atomic spectral line content, etc. The metal ionization rate in near-substrate plasma region increased significantly after the pulsed voltage exceeded 700 V; increasing working pressure to 5.0 mTorr at the pulsed voltage of 600 V could effectively improve content of excited state Cr particles arriving at the substrate. However, the increase of working air pressure would reduce the ionization rate of metal. The increase of superimposed DC current could decrease content of activated Cr+ and Cr* arriving at the substrate to a certain degree. The superimposed DC currentshould be below 1.0 A to maintain certain proportion of activated particles. The activated particles in near-substrate plasma region in HiPIMS are mainly excited Ar+ and Cr* atoms, leading collision processes are ionization recombination of Ar+ atoms and de-excitation of Cr* atoms. Metal ionization rate shall be improved.
Keywords:HiPIMS   near-substrate surface region   emission spectrum   superimposed DC current
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《表面技术》浏览原始摘要信息
点击此处可从《表面技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号