首页 | 本学科首页   官方微博 | 高级检索  
     


Elevated Production of Mitochondrial Reactive Oxygen Species via Hyperthermia Enhanced Cytotoxic Effect of Doxorubicin in Human Breast Cancer Cell Lines MDA-MB-453 and MCF-7
Authors:Azusa Terasaki  Hiromi Kurokawa  Hiromu Ito  Yoshiki Komatsu  Daisuke Matano  Masahiko Terasaki  Hiroko Bando  Hisato Hara  Hirofumi Matsui
Abstract:Hyperthermia (HT) treatment is a noninvasive cancer therapy, often used with radiation therapy and chemotherapy. Compared with 37 °C, 42 °C is mild heat stress for cells and produces reactive oxygen species (ROS) from mitochondria. To involve subsequent intracellular accumulation of DOX, we have previously reported that the expression of ATP-binding cassette sub-family G member 2 (ABCG2), an exporter of doxorubicin (DOX), was suppressed by a larger amount of intracellular mitochondrial ROS. We then hypothesized that the additive effect of HT and chemotherapy would be induced by the downregulation of ABCG2 expression via intracellular ROS increase. We used human breast cancer cell lines, MCF-7 and MDA-MB-453, incubated at 37 °C or 42 °C for 1 h to clarify this hypothesis. Intracellular ROS production after HT was detected via electron spin resonance (ESR), and DOX cytotoxicity was calculated. Additionally, ABCG2 expression in whole cells was analyzed using Western blotting. We confirmed that the ESR signal peak with HT became higher than that without HT, indicating that the intracellular ROS level was increased by HT. ABCG2 expression was downregulated by HT, and cells were injured after DOX treatment. DOX cytotoxicity enhancement with HT was considered a result of ABCG2 expression downregulation via the increase of ROS production. HT increased intracellular ROS production and downregulated ABCG2 protein expression, leading to cell damage enhancement via DOX.
Keywords:hyperthermia  reactive oxygen species  ABCG2  doxorubicin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号