首页 | 本学科首页   官方微博 | 高级检索  
     

基于局部粒子群算法的家庭用电负荷优化控制策略
引用本文:吴丹琦,赖俊升,杨俊华,李学聪,赖来利,熊锋俊. 基于局部粒子群算法的家庭用电负荷优化控制策略[J]. 广东工业大学学报, 2019, 36(6): 66-73. DOI: 10.12052/gdutxb.190034
作者姓名:吴丹琦  赖俊升  杨俊华  李学聪  赖来利  熊锋俊
作者单位:广东工业大学 自动化学院,广东 广州,510006;广东工业大学 自动化学院,广东 广州 510006;英国利兹大学 工程学院,西约克郡 利兹 LS29JT
基金项目:中央财政支持地方高校发展专项资金项目(2016[202]);广东普通高校创新团队项目(2016KCXTD022)
摘    要:提出一种分时电价政策下电能总花费最低的家庭用电负荷优化控制策略.采用局部粒子群算法对家庭中4类常见用电负荷的花费进行优化,与无优化处理和传统粒子群算法进行对比分析,并在Python平台上搭建数学模型和开展仿真实验.结果表明,局部粒子群算法可大幅度减少家庭用电花费,具有全局搜索能力强、收敛速度快等优点,可推广应用到家庭能源管理领域相关研究.

关 键 词:家庭能源管理  分时电价  仿真实验  局部粒子群算法
收稿时间:2019-03-11

A Household Electricity Load Optimal Control Strategy Based on Local Particle Swarm Optimization
Wu Dan-qi,Lai Chun Sing,Yang Jun-hua,Li Xue-cong,Lai Loi Lei,Xiong Feng-jun. A Household Electricity Load Optimal Control Strategy Based on Local Particle Swarm Optimization[J]. Journal of Guangdong University of Technology, 2019, 36(6): 66-73. DOI: 10.12052/gdutxb.190034
Authors:Wu Dan-qi  Lai Chun Sing  Yang Jun-hua  Li Xue-cong  Lai Loi Lei  Xiong Feng-jun
Affiliation:1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China;2. Faculty of Engineering, The University of Leeds, Leeds LS2 9JT, UK
Abstract:In order to optimize the household electricity load, an optimal control strategy is proposed for household electricity consumption to minimize the total electricity charges under the time-of-use electricity pricing policy. Local Particle Swarm Optimization (LPSO) algorithm is used to minimize the electricity charges of four kinds of household electricity loads, and then compared with no-optimization treatment and traditional Particle Swarm Optimization (PSO) respectively. Using Python software, the mathematical model is built and simulated tests are carried out. The simulation results show that LPSO can significantly reduce the total electricity charges and has the advantages of strong global search ability and fast convergence speed, which can be applied to relevant researches in the field of household energy management.
Keywords:household energy management  time-of-use pricing  simulation experiment  local particle swarm optimization  
本文献已被 万方数据 等数据库收录!
点击此处可从《广东工业大学学报》浏览原始摘要信息
点击此处可从《广东工业大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号