首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的核桃外壳缺陷检测
引用本文:余思黔,赵麒荣,林嘉晨,贾雁飞,陈广大. 基于深度学习的核桃外壳缺陷检测[J]. 吉林化工学院学报, 2022, 39(9): 80-85. DOI: 10.16039/j.cnki.cn22-1249.2022.09.017
作者姓名:余思黔  赵麒荣  林嘉晨  贾雁飞  陈广大
作者单位:北华大学 电气与信息工程学院,吉林,132013
摘    要:实现了对核桃外壳缺陷的快速识别,提高基于机器视觉的核桃分选效率,提出了一种基于改进的YOLOv5s核桃外壳缺陷检测方法.YOLOv5s网络中大量采用卷积核为3的卷积进行特征提取,为降低网络的计算量,提出利用深度可分离卷积代替残差网络中所采用的卷积核为3的卷积,提高对核桃外壳检测的速度.此外,为了保证精度能够满足要求,采用了改进的均值聚类对检测框进行初始化,提高生成检测框的质量,进而提高核桃外壳缺陷检测精度.由于聚类方法相对整个网络结构计算量较小,因此对核桃外壳检测的速度影响较小.通过实验对比分析,改进后的YOLOv5s能够快速识别出核桃外壳缺陷,而且识别精度基本保持不变.

关 键 词:深度学习  机器视觉  深度可分离卷积  核桃外壳缺陷检测

Walnut Shell Defect Detection based on Deep Learning
YU Siqian,ZHAO Qirong,LIN Jiachen,JIA Yanfei,CHEN Guangda. Walnut Shell Defect Detection based on Deep Learning[J]. Journal of Jilin Institute of Chemical Technology, 2022, 39(9): 80-85. DOI: 10.16039/j.cnki.cn22-1249.2022.09.017
Authors:YU Siqian  ZHAO Qirong  LIN Jiachen  JIA Yanfei  CHEN Guangda
Abstract:In order to realize the rapid recognition of walnut shell defects and improve the walnut sorting efficiency based on machine vision, a walnut shell defect detection method based on improved yolov5s is proposed. In yolov5s network, convolution with convolution kernel size 3 is widely used for feature extraction. In order to reduce the amount of network calculation, this paper proposes to use depth wise separable convolution instead of convolution with convolution kernel size 3 in residual network, so as to improve the speed of walnut shell detection. In addition, in order to ensure that the accuracy can meet the requirements, this paper also uses the improved mean clustering to initialize the detection frame, improve the quality of the generated detection frame, and then improve the detection accuracy of walnut shell defects. Because the clustering method has less computation than the whole network structure, it has little impact on the speed of peach shell detection. Through experimental comparison and analysis, the improved yolov5s can quickly identify walnut shell defects, and the recognition accuracy remains basically unchanged.
Keywords:deep Leaning   machine vision   depth wise separable convolution   walnut shell defect detection  
点击此处可从《吉林化工学院学报》浏览原始摘要信息
点击此处可从《吉林化工学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号