首页 | 本学科首页   官方微博 | 高级检索  
     

基于GA-SVM的刚性罐道故障诊断
引用本文:马天兵,王孝东,杜菲,王鑫泉. 基于GA-SVM的刚性罐道故障诊断[J]. 工程设计学报, 2019, 26(2): 170-176. DOI: 10.3785/j.issn.1006-754X.2019.02.007
作者姓名:马天兵  王孝东  杜菲  王鑫泉
作者单位:安徽理工大学机械工程学院,安徽淮南232001;安徽理工大学矿山智能装备与技术安徽省重点实验室,安徽淮南232001;安徽理工大学机械工程学院,安徽淮南,232001
基金项目:国家自然科学基金资助项目(51305003);安徽省高校自然科学研究重大项目(KJ2015ZD19)
摘    要:针对刚性罐道故障类型识别精度低这一难题,提出了一种基于遗传算法(genetic algorithm,GA)和支持向量机(support vector machine,SVM)的刚性罐道故障诊断方法。搭建了立井提升系统实验台,模拟2种典型的罐道故障,并采集提升容器振动加速度信号。运用经验模态分解(empirical mode decomposition,EMD)方法对振动加速度信号进行分解,选取前4个固有模态函数(intrinsic mode function,IMF),然后运用奇异值分解(singular value decomposition,SVD)方法计算出每个IMF的奇异值作为故障特征参数,将得到的故障特征参数作为SVM的训练集,通过GA参数寻优方法得到SVM关键参数cg的最优值,并选取新的测试样本检测SVM的诊断效果。实验结果表明:基于GA-SVM的刚性罐道故障诊断方法的平均分类准确率达到93%。研究结果表明该方法能精确地识别刚性罐道的典型故障类型,为立井提升系统等非线性非平稳复杂系统的故障诊断提供一种通用可行的解决方法。

关 键 词:刚性罐道  故障诊断  遗传算法  经验模态分解  奇异值分解
收稿时间:2019-04-28

Fault diagnosis for rigid guide based on GA-SVM
MA Tian-bing,WANG Xiao-dong,DU Fei,WANG Xin-quan. Fault diagnosis for rigid guide based on GA-SVM[J]. Journal of Engineering Design, 2019, 26(2): 170-176. DOI: 10.3785/j.issn.1006-754X.2019.02.007
Authors:MA Tian-bing  WANG Xiao-dong  DU Fei  WANG Xin-quan
Abstract:In order to improve the identification accuracy of rigid guide fault type, a method based on genetic algorithm (GA) and support vector machine (SVM) was proposed to solve the fault diagnosis problem. Vertical shaft lifting system experimental platform was set up to simulate two typical types of rigid guide fault, and the vibration acceleration signal of the lifting vessel was collected. The vibration acceleration signal was decomposed by empirical mode decomposition (EMD), and the singular values of first four intrinsic mode functions (IMF) were calculated by singular value decomposition (SVD) method as the fault characteristic parameters. The fault characteristic parameter was used as the training set of the SVM, and the optimal values of c and g of the SVM were obtained by the GA parameter optimization method. The new test samples were selected to detect the diagnostic effect of SVM. The experimental results showed that the average classification accuracy of rigid guide fault diagnosis method based on GA-SVM reached 93%. This method can accurately identify the typical fault types of rigid guide, and provide a general and feasible solution for the fault diagnosis of nonlinear and non-stationary complex systems such as vertical shaft lifting system.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《工程设计学报》浏览原始摘要信息
点击此处可从《工程设计学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号