首页 | 本学科首页   官方微博 | 高级检索  
     

结合注意力与特征融合的目标跟踪
引用本文:高俊艳,刘文印,杨振国. 结合注意力与特征融合的目标跟踪[J]. 广东工业大学学报, 2019, 36(4): 18-23. DOI: 10.12052/gdutxb.190039
作者姓名:高俊艳  刘文印  杨振国
作者单位:广东工业大学 计算机学院,广东 广州,510006;广东工业大学 计算机学院,广东 广州,510006;广东工业大学 计算机学院,广东 广州,510006
基金项目:国家自然科学基金资助项目(61703109,91748107);中国博士后科学基金资助项目(2018M643024);广东省引进创新科研团队计划资助项目(2014ZT05G157)
摘    要:全卷积孪生网络通过相似性学习解决目标跟踪问题,其算法受到了越来越多的关注.为了提取更有判别力的目标特征,提升跟踪的精确度和鲁棒性,提出了一种结合注意力机制与特征融合的目标跟踪模型.首先,将第一帧和当前帧的前一帧结合作为目标模板,利用共享的特征提取网络提取目标模板和当前帧的多个卷积层的特征;然后,对于目标模板的多层卷积特征,结合通道注意力机制处理,提升模板特征的判别力;最后,目标模板的特征与当前帧的特征进行互相关计算,得到响应图,从而获取预测目标在当前帧中的位置和尺度.最终实验结果表明,与几个先进的跟踪模型相比,提出的目标跟踪模型获得了比较有竞争力的性能.

关 键 词:目标跟踪  孪生网络  特征融合  注意力机制  判别力特征
收稿时间:2019-03-15

Object Tracking Combined with Attention and Feature Fusion
Gao Jun-yan,Liu Wen-yin,Yang Zhen-guo. Object Tracking Combined with Attention and Feature Fusion[J]. Journal of Guangdong University of Technology, 2019, 36(4): 18-23. DOI: 10.12052/gdutxb.190039
Authors:Gao Jun-yan  Liu Wen-yin  Yang Zhen-guo
Affiliation:School of Computers, Guangdong University of Technology, Guangzhou 510006, China
Abstract:The full-convolutional Siamese network solves the problem of object tracking through similarity learning, and the algorithm has received more and more attention. In order to extract more discriminative object features and improve the accuracy and robustness of tracking, an object tracking model combining attention mechanism and feature fusion is proposed. Firstly, the first frame and the previous frame of the current frame are combined as target templates, and the features from multiple convolution layers of the target templates and the current frame are extracted by using the shared feature extraction network. Furthermore, for the multi-layer convolution features of the target templates, the channel attention mechanism is adopted to improve the discriminative power of the template features. Finally, the features of the target templates are cross-correlated with the features of the current frame to obtain response map, thereby obtaining the position and scale of the predicted object in the current frame. The final experimental results show that compared with several advanced tracking models, the proposed object tracking model achieves relatively competitive performance.
Keywords:object tracking  siamese network  feature fusion  attention mechanism  discriminative feature  
本文献已被 万方数据 等数据库收录!
点击此处可从《广东工业大学学报》浏览原始摘要信息
点击此处可从《广东工业大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号