首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进U-Net的视网膜血管分割
作者姓名:王师玮  陈俊  易才键
作者单位:福州大学物理与信息工程学院
摘    要:针对传统算法在眼底视网膜血管分割过程中存在特征提取困难、细节区域分割不精确的问题,本文在U-Net网络的基础上进行改进,提出了一种能更好进行血管分割的算法CSD-UNet。首先,在编码和解码阶段使用了卷积注意力模块,通过引入注意力机制对血管的细微结构进行通道和空间增强;其次,采用了SoftPool的池化方法,保证在下采样阶段保留更多原始信息,增加感受野;最后,选择密集上采样卷积作为本算法的上采样方法,产生像素级预测且捕获更多细节信息。在公开数据集DRIVE、CHASE_DB1上验证该算法,结果表明,该算法较现有的先进算法在分割效果上有一定的提升。

关 键 词:视网膜血管分割  U-Net  卷积注意力模块
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号