首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic relaxation characteristics of Matrimid polyimide
Authors:Anthony C Comer  Brandon W Rowe  Benny D Freeman  Donald R Paul
Affiliation:a Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, USA
b Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
c Center for Energy and Environmental Resources, Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78758, USA
Abstract:The dynamic relaxation characteristics of Matrimid® (BTDA-DAPI) polyimide have been investigated using dynamic mechanical and dielectric methods. Matrimid exhibits three motional processes with increasing temperature: two sub-glass relaxations (γ and β transitions), and the glass—rubber (α) transition. The low-temperature γ transition is purely non-cooperative, and displays an identical time-temperature response to both the dynamic mechanical and the dielectric probes with a corresponding activation energy, EA = 43 kJ/mol. The β sub-glass transition shows a more cooperative character as assessed via the Starkweather method. Comparison of dynamic mechanical and dielectric data for the β process suggests that the dynamic mechanical test (EA = 156 kJ/mol) is sensitive to a broader, more strongly correlated range of sub-glass motions as compared to the dielectric probe (EA = 99 kJ/mol). Time-temperature superposition was used to establish mechanical master curves across the glass-rubber (α) relaxation, and these data could be described using the Kohlrausch-Williams-Watts function with an exponent value, βKWW = 0.34. The corresponding shift factors were used as the basis of a cooperativity plot for the determination of dynamic fragility. The relation between fragility index (m = 115) and βKWW for the Matrimid polyimide was in good agreement with the wide correlation reported in the literature.
Keywords:Dynamic mechanical analysis  Dielectric spectroscopy  Physical aging
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号